
Advanced Computer Graphics
Boundary Representations
for Graphical Models

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

The Problem

§  How to store objects in versatile and efficient data structures?

§  Definition Boundary-Representation (B-Rep):
Objects "consist" of

1.  Triangles, quadrangles, and polygons (i.e., geometry)

2.  Incidence and adjacency relationships (i.e., "topology", "connectivity")

§  By contrast, there are also representations that try to model the
volume directly, or that consist only of individual points

G. Zachmann 4 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Definitions: Graphs

§  A graph is a pair G=(V, E), where V = {v0,v1,…,vn-1} is a non-empty
set of n different nodes (points, vertices) and E is a set of edges
(vi, vj).

§  When V is a (discrete) subset of with d ≥ 2, then G = (V, E) is
called a geometric graph.

§  Two edges/nodes are called neighboring or adjacent, iff they
share a common node/edge.

§  If e = (vi, vj) is an edge in G, then e and vi are called incident (dito
for e und vj ; vi and vj are called neighboring or adjacent).

§  In the following, edges will be undirected edges, and
consequently we will denote them just by vivj.

§  The degree of a node/vertex := number of incident edges

Rd

G. Zachmann 5 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Polygons

§  A polygon is a geometric graph P = (V, E), where
V = {v0,v1,…,vn-1} ⊂ , d ≥ 2, and E = { (v0,v1), …, (vn-1, v0) }.

§  Nodes are called vertices (sometimes points or corners).

§  A polygon is called

§  flat, if all vertices lie in the same plane;

§  simple, if it is flat and if the intersection of every two edges in E is either
empty or a vertex in V, and if every vertex is incident to exactly two
edges (i.e., if the polygon does not have self intersections).

§  By definition, we will consider only closed polygons

v0 v1
v2

v4
v5 v6

v3

Rd

G. Zachmann 6 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Mesh (Polygonal Mesh)

§  Let M be a set of closed, simple polygons Pi ;
 let

§  M is called a mesh iff

§  the intersection of two polygons in M is either empty, a
point v ∈ V or an edge e ∈ E ; and

§  each edge e ∈ E belongs to at least one polygon
(no dangling edges)

§  The set of all edges, belonging to one polygon only,
is called the border of the mesh

§  A mesh with no border is called a closed mesh

§  The set of all points V and edges E of a mesh
constitute a graph, too

V =
S

i Vi E =
S

i Ei

G. Zachmann 7 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

First Explicit Application of a Mesh for a Music Video

Kraftwerk: Musique non Stop, 1986. Musikvideo von Rebecca Allen.

G. Zachmann 8 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Definition: Polyhedron

§  A mesh is called polyhedron, if

1.  each edge e ∈ E is incident to exactly two polygons (i.e., the mesh is
closed); and

2.  no subset of the mesh fulfills condition (1).

§  The polygons are also called facets / faces (Facetten)

§  Theorem (w/o proof):
Each polyhedron P partitions space into three subsets: its surface,
its interior, and its exterior.

OK Nö Nö

G. Zachmann 9 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Orientation

§  Each facet of a mesh can be oriented by the
definition of a vertex order
§  Each facet can have exactly two orientations

§  Two adjacent facets have the same
orientation, if the common edge is traversed
in opposite directions, when the two facets
are traversed according to their orientation

§  The orientation determines the surface
normal of a facet. By convention, it is
obtained using the right-hand-rule

0 1

2

6
5 4

3

7

+

0 1

2

6
5 4

7

3 -

G. Zachmann 10 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  A mesh is called orientable, if all facets can be oriented such that
every two adjacent facets have the same orientation
§  The mesh is called oriented if all facets actually do have the same

orientation

§  A mesh is called non-orientable, if there are
always two adjacent facets that have
opposite orientation, no matter
how the orientation of all facets is chosen

§  Theorems (w/o proof):

§  Each non-orientable surface that is embedded in
three-dimensional space and closed must have
a self-intersection

§  The surface of a polyhedron is always orientable

G. Zachmann 11 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Digression: the Möbius Strip in the Arts

Möbius Strip II, woodcut, 1963 Interlocked Gears,
Michael Trott, 2001

Max Bill

G. Zachmann 12 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Is the Escher Knot an Orientable Mesh or Not?

http://homepages.sover.net/~tlongtin

G. Zachmann 14 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Definition: Homeomorphism

§  Homeomorphism = bijective, continuous mapping between two
"objects" (e.g. surfaces), the inverse mapping of which must be
continuous too

§  Two objects are called homeomorph iff there is a homeomorphism
between the two

§  Note: don't confuse this with homomorphism or homotopy!

§  Illustration:

§  Squishing, stretching, twisting is allowed

§ Making holes is not allowed

§  Cutting is allowed only, if the object is glued together afterwards at
exactly the same place

G. Zachmann 15 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Homeomorph objects are also called
topologically equivalent

§  Examples:
§  Disc and square

§  Cup and torus

§  An object and its mirror object

§  Trefoil knot and ?

§  The border of the Möbius strip and ... ?

§  All convex polyhedra are
homeomorphic to a sphere (and
some non-convex ones are too)

Trefoil knot

G. Zachmann 16 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Two-Manifolds (Zwei-Mannigfaltigkeiten)

§  Definition: a surface is called two-manifold, iff for each point on
the surface there is an open ball such that the intersection of the
ball and the surface is topologically equivalent at two-
dimensional disc

§  Examples:

§  Notice: in computer graphics, often the term "manifold" is used
when 2-manifold is meant!

§  The term "piecewise linear manifold" is sometimes used by
people, to denote just a mesh …

G. Zachmann 17 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Data Structures for Meshes

§  The most naïve data structure:

§  Array of polygons; each polygon = array of vertices

§  Example:

§  Problems:

§  Vertices occurr several times!

- Waste of memory, problems with animations, …

§ How to find all faces, incident to a given vertex?

§ Different array sizes for polygons with different numbers of vertices

face[0] =
x0 y0 z0

x1 y1 z1

x5 y5 z5

x4 y4 z4

face[1] =
x0 y0 z0

x4 y4 z4

x7 y7 z7

x3 y3 z3 v0 v1

v2

v4 v5

v6 v7

v3

f0

face[2] =
x4 y4 z4

x5 y5 z5

x6 y6 z6

x7 y7 z7

. . .

G. Zachmann 18 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

The Indexed Face Set

§  Idea: common "vertex pool" (shared vertices)

§  Example:

§  Advantage: significant memory savings

§  1 vertex = 1 point + 1 vector (v.-normal) + uv-texture coord. = 32 bytes

§  1 index = 1 integer = 4 bytes

§  Deformable objects / animations are mcuch easier

§  Probably the most common data structure

vertices =
x0 y0 z0

x1 y1 z1

x2 y2 z2

x3 y3 z3

. . .

face vertex index
0 0, 1, 5, 4
1 0, 3, 7, 4
2 4, 5, 6, 7

. . .
v0 v1

v2

v4 v5

v6 v7

v3

f0

G. Zachmann 19 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

The OBJ File Format

§  OBJ = indexed face set + further features

§  Line based ASCII format

1.  Ordered list of vertices:

§  Introduced by "v" on the line

§  Spatial coordinates x, y, z

§  Index is given by the order in the file

2.  Unordered list of polygons:

§  A polygon is introduced by "f"

§  Then, ordered list of vertex indices

§  Length of list = # of edges

§ Orientation is given by order of vertices

§  In principle, "v" and "f" can be mixed
arbitrarily

v x0 y0 z0

v x1 y1 z1

v x2 y2 z2

v x3 y3 z3

f 0 1 2
f 1 3 2

(x0,y0,z0) (x1,y1,z1)

(x2,y2,z2) (x3,y3,z3)

G. Zachmann 20 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

More Attributes

§  Vertex normals:
§  prefix"vn"
§  contains x, y, z for the normalen
§  not necessarily normalized
§  not necessarily in the same in the

same order as the vertices
§  indizes similar to vertex indices

§  Texture coordinates:
§  prefix "vt"
§  not necessarily in the same in the

same order as the vertices
§  Contains u,v texture coordinates

§  Polygons:
§  use "/" as delimiter for the indices
§  vertex / normal / texture
§  normal and texture are optional
§  use "//" to omit normls, if only

texture coords are given

v x0 y0 z0
v x1 y1 z1
v x2 y2 z2

vn a0 b0 c0
vn a1 b1 c1
vn a2 b2 c2

vt u0 v0
vt u1 v1
vt u2 v2

f 0/0/0 …
f …

(x0,y0,z0)
 (a0,b0,c0)

 (u0,v0)

(x1,y1,z1)
(a1,b1,c1)

(u1,v1)

(x2,y2,z2)
(a2,b2,c2)

(u2,v2)

f 0/0/0 1/1/1 2/2/2 f 0/1/0 1/1/1 2/1/2

G. Zachmann 21 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Problems:

§  Edges are (implicitly) stored two times

§  Still no adjacency information (no "topology")

§  Consequence:

§  Finding all facets incident to a given vertex takes time O(), where

n = # facets of the mesh

§  Dito finding all vertices adjacent to another given vertex

§  A complete mesh traversal takes time O(n2)

-  With a mesh traversal you can, for instance, test whether an object is closed

-  Can be depth first or breadhth first

n

G. Zachmann 22 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Examples Where Adjacency Information is Needed

§  Computing vertex normals

§  Editing meshes

§  Simulation, e.g., mass-spring systems

p0
n1 n4

n3
n2

v

nv

G. Zachmann 23 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Example Application: Simplification

§  Simplification: Generate a coarse mesh from a fine mesh

§ While maintaining certain critera (will not be discussed further here)

§  Elementary operations:

§  Edge collapse:

-  All edges adjacent to the edge are required

§  Vertex removal:

-  All edges incident to the vertex are needed

G. Zachmann 24 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

All Possible Connectivity Relationships

 Given Looking for notation
 ("all neighbours ..")

1 Vertex Vertices V → V

2 Vertex Edges V → E

3 Vertex Faces V → F

4 Edge Vertices E → V

5 Edge Edges E → E

6 Edge Faces E → F

7 Face Vertices F → V

8 Face Edges F → E

9 Face Faces F → F

Abstract notation of a data structure with
all connectivity relationships:
arrows show the incidence/adjacency info

VV VF VE

EV EF EE

FV FF FE

V F

E

G. Zachmann 25 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Example: the Indexed Face Set

§  Question: What is the minimal data structure, that can answer all
neighboring queries in time O(1)?

vertices
x0 y0 z0

x1 y1 z1

x2 y2 z2

x3 y3 z3

. . .

face vertex index
0 0, 1, 5, 4
1 0, 3, 7, 4
2 4, 5, 6, 7

. . .
= V F

E

G. Zachmann 26 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

The Winged-Edge Data Structure

§  Idea: edge-based data structure (in contrast to face-based)

§  Observations:

§  An edge stores two indices to 2 vertices: e.org , e.dest
→ yields an orientation of the edge

§  In a closed polyhedron, each edge is incident to exactly 2 facets

§  If it is oriented, then one
of these facets has the same
orientation as the edge,
the other one is opposite

e.org

e.dest

face 2

face 1
e

G. Zachmann 27 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Each edge has 4 pointers to 4 adjacent edges:

1.  e.prf = edge adjacent to e.dest and incident to right face
 (prf = "previous right face")

2.  e.nrf = edge adjacent to e.org and incident to right face
 ("next right face")

3. /4. e.nlf / e.plf = edge adjacent to e and incident to left face ("next/
previous left face")

§  Observation: if all facets
are oriented consistently,
then each edge occurs once
from org⟶dest and once
from dest⟶org

e.org

e.dest

e.prf

e.plf

e

e.nlf

e.nrf

left face

right face

G. Zachmann 28 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  In addition:

§  Each edge stores one pointer to the left and right facet (e.lf, e.rf)

§  Each facet & each vertex stores one pointer to a arbitrary edge incident
to it

§  Abstract representation of the data structure:

V F

E

1, sign 2

4

2 1

G. Zachmann 29 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Example

List of vertices
v coord e
0 0.0 0.0 0.0 0
1 1.0 0.0 0.0 1
2 1.0 1.0 0.0 2
3 0.0 1.0 0.0 3
4 0.0 0.0 1.0 8
5 1.0 0.0 1.0 9
6 1.0 1.0 1.0 10
7 0.0 1.0 1.0 11

List of edges
e org dest ncw nccw pcw pccw lf rf
0 v0 v1 e1 e5 e4 e3 f1 f0
1 v1 v2 e2 e6 e5 e0 f2 f0
2 v2 v3 e3 e7 e6 e1 f3 f0
3 v3 v0 e0 e4 e2 e7 f4 f0
4 v0 v4 e8 e11 e0 e3 f4 f1
5 v1 v5 e9 e8 e1 e0 f1 f2
6 v2 v6 e10 e9 e2 e1 f2 f3
7 v3 v7 e11 e10 e3 e2 f3 f4
8 v4 v5 e5 e9 e4 e11 f5 f1
9 v5 v6 e6 e10 e5 e8 f5 f2
10 v6 v7 e7 e11 e9 e6 f5 f3
11 v7 v4 e4 e8 e10 e7 f5 f4

Facets
0 e0 -
1 e8 -
2 e5 -
3 e6 -
4 e11 -
5 e8 +

f1

f3 e7

v0 v1

v2

v4 v5

v6 v7

v3

e0

e1
e2

e3

e4 e5

e6
e8

e9

e10

e11

G. Zachmann 30 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Example for Traversing that Data Structure

§  Example task: enumerate all edges of f4 in CCW order:

Edge list
e org dest ncw nccw pcw pccw lf rf
0 v0 v1 e1 e5 e4 e3 f1 f0
1 v1 v2 e2 e6 e5 e0 f2 f0
2 v2 v3 e3 e7 e6 e1 f3 f0
3 v3 v0 e0 e4 e2 e7 f4 f0
4 v0 v4 e8 e11 e0 e3 f4 f1
5 v1 v5 e9 e8 e1 e0 f1 f2
6 v2 v6 e10 e9 e2 e1 f2 f3
7 v3 v7 e11 e10 e3 e2 f3 f4
8 v4 v5 e5 e9 e4 e11 f5 f1
9 v5 v6 e6 e10 e5 e8 f5 f2
10 v6 v7 e7 e11 e9 e6 f5 f3
11 v7 v4 e4 e8 e10 e7 f5 f4

f1

f3 e7

v0 v1

v2

v4 v5

v6 v7

v3

e0

e1
e2

e3

e4 e5

e6
e8

e9

e10

e11

f4 → e11 / "-" :

→ pccw

v3

e7
v7

v4
e11

e3
v0

e7
v4

v7

v3

e11
Finish

v7
e11

v4

→ pccw → nccw

e7

e4

v4

v7

e3
v0

v3

e11

→ nccw

G. Zachmann 31 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  All neighborhood/connectivity queries can be answered in
time O(k) where (k = size of the output)

§  3 kinds of queries can be answered directly in O(1),
and 6 kinds of queries can be answered by a local traversal of the
data structures around a facet or a vertex in O(k)

§  Problem: When following edges, one has to test for each edge
how it is oriented, in order to determine whether to follow
n[c]cw or p[c]cw!

G. Zachmann 32 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Doubly Connected Edge List [Preparata & Müller, 1978]

§  In computer graphics rather known as "half-edge data structure"

§  Arguably the easiest and most efficient neighborhood data structure

§  Idea:

§  Like the winged-wdge DS, but with "split" edges

§ One half-edge (= entry in the edge table) represents only one direction
and one "side" of the complete edge

§  The pointers stored with each half-edge:

-  Start (org) and end vertex (dest)

-  Incident face (on the left-hand side)

-  Next und previous edge (in traversal order)

-  (Originating vertex can be omitted,
because e.org = e.twin.dest)

e.org

e.prev

e

e.face

e.twin
e.dest

e.next

G. Zachmann 33 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Abstract notation:

§  Here without pointer to originating vertex (org)

§  Requires twice as many entries in the edge
table as the winged-edge DS

V F

E

1 1

2

1 1

G. Zachmann 34 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Example (Here in CW Order!)

0

V0 V1

v2

v4 v5

v6 v7

v3

12 7

6

5

3

4 8

9

15

12

13
14

11

16

17
18

19

20

10

21
22

23

Facets
0 e20
1 e4
2 e0
3 e15
4 e16
5 e8

List of Vertices
v coord e
0 0.0 0.0 0.0 0
1 1.0 0.0 0.0 1
2 1.0 1.0 0.0 2
3 0.0 1.0 0.0 3
4 0.0 0.0 1.0 4
5 1.0 0.0 1.0 9
6 1.0 1.0 1.0 13
7 0.0 1.0 1.0 16

List of Half-Edges
e org next prv twin e org next prv twin
0 0 1 3 6 12 2 13 15 10
1 1 2 0 11 13 6 14 12 22
2 2 3 1 15 14 7 15 13 19
3 3 0 2 18 15 3 12 14 2
4 4 5 7 20 16 7 17 19 21
5 5 6 4 8 17 4 18 16 7
6 1 7 5 0 18 0 19 17 3
7 0 4 6 17 19 3 16 18 14
8 1 9 11 5 20 5 21 23 4
9 5 10 8 23 21 4 22 20 16
10 6 11 9 12 22 7 23 21 13
11 2 8 10 1 23 6 20 22 9 Also note the demo on

http://www.holmes3d.net/graphics/dcel/

G. Zachmann 35 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Visualization for a quad mesh:

G. Zachmann 36 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Invariants in a DCEL

§  Here, we will use the "functional notation", i.e.,
twin(e) = e.twin

§  Invariants (= axioms in an ADT "DCEL"):

§  twin(twin(e)) = e , if the mesh is closed

§  org(next(e)) = dest(e)

§  org(e) = dest(twin(e)) [if twin(e) is existing]

§  org(v.edge) = v [v always points to a leaving edge!]

§  etc. …

G. Zachmann 37 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Face and Vertex Cycling

§  Given: a closed, 2-manifold mesh

§  Wanted: all vertices incident to a given face f

§  Algorithm:

§  Running time is in O(k) , with k = # vertices of f

f

e

e_start ← f.edge
e ← e_start
repeat
 output e.dest
 e ← e.next
until e == e_start

G. Zachmann 38 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Task: report all vertices adjacent to a given vertex v

§  Algorithm (w.l.o.g., v points to a leaving edge):

§  Running time is in O(k) , where k = # neighbours of v

e_start ← v.edge
e ← e_start
repeat
 output e.dest
 e ← e.twin.next
until e == e_start

v

e

G. Zachmann 39 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Terminology: a feature = a vertex or an edge or a facet

§  Theorem:
A DCEL over a 2-manifold mesh supports all incidence and
adjacency queries for a given feature in time O(1) or O(k), where
k = # neighbours.

C
ou

rt
ne

y
G

ib
bo

ns
 2

00
7

G. Zachmann 40 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Limitations / Extensions of the DCEL

§  A DCEL can store only meshes that are ...
1.  two-manifold and

2.  orientable, and

3.  the polygons of which do not have "holes"!

§  Extensions: lots of them, e.g. those of Hervé Brönnimann
§  For non-2-manifold vertices, store several pointers to incident edges

§  Dito for facets with holes

§  Yields several cycles of edges for such vertices/faces

Fig. 2. An illustration of (a) facets with holes, (b) outer boundary, and (c) singular vertices.

I8. If a HDS supports facets, and satisfies invariants I1–I4, then facet(h)=facet(g)
for any halfedges h, g that belong to the same boundary cycle.

2.4 Vertex and Facet Links

Even though our HDS may support vertices or facets, we may or may not want to
allocate storage from each vertex of facet to remember one (perhaps all) the incidents
halfedges. We say that a vertex-supporting HDS is source-linked if it provides a pointer
source_cycle(v) to a halfedge whose source is the vertex v, and that it is target-linked
if it provides a pointer target_cycle(v) to a halfedge whose source is the vertex v. A
facet-supporting HDS is facet-linked if it provides a pointer boundary_cycle(f) to a
halfedge on the boundary of any facet (in which case it must also provide the reverse
access facet(h) to the facet which is incident to a given halfedge h). It is possible to
envision use of both vertex- and facet-linked HDS, and non-linked HDS. The following
invariants guarantee the validity of the HDS.
I9. If a HDS supports vertices, is source-linked, and satisfies Invariants I1–I7, then

source(source_cycle(v))=v for every vertex v.
I10. If a HDS supports vertices, is target-linked, and satisfies Invariants I1–I7, then

target(target_cycle(v))=v for every vertex v.
I11. If a HDS supports facets, is facet-linked, and satisfies Invariants I1–I6 and I8,

then facet(boundary_cycle(f))=f for every facet f.

2.5 HDS with Holes in Facets and Singular Vertices

An HDS may or may not allow facets to have holes. Not having holes means that
each facet boundary consists of a single cycle; it also means that there is a one-to-
one correspondence between facets and abstract facets. In a HDS supporting holes in
facets, each facet is required to give access to a hole container.2 This container may be
global to the HDS, or contained in the facet itself. Each element of that container need
only point to a single halfedge.

In a facet with holes, one of the cycles may be distinguished and called the outer
boundary; the other holes are the inner holes. This is only meaningful for plane struc-
ture (see Figure 2(b)), where the outer boundary is distinguished by its orientation
2 The container concept is defined in the C++ STL.

G. Zachmann 43 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

A DCEL Data Structure for Non-2-Manifolds

§  Directed Edge DS: extension of half-edge DS for meshes that are
not 2-manifold at just a few extraordinary places

§  Idea:

§  Store pointers to other edges (e.next, e.prev, v.edge, f.edge) as integer
indices into the edge array

§  Use the sign of the index as a flag for additonal information

§  Interpret negative indices as pointers into additonal arrays, e.g.,

-  a list of all edges eminating from a vertex; or

-  the connected component accessible from a vertex / edge

G. Zachmann 44 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Why does the conventional DCEL fail for the following example?

v

G. Zachmann 52 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Combinatorial Maps

§  Remark: winged-edge and DCEL data structures are (simple)
examples of so-called combinatorial maps

§  Other combinatorial maps are:

§ Quad-edge data structure (and augmented quad-edge)

§ Many extensions of DCEL

§  Cell-chains, n-Gmaps
(like DCELs that can be extended to n-dimensional space)

§ Many more …

G. Zachmann 53 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

The Euler Equation

§  Theorem (Euler's Equation):
Let V, E, F = number of vertices, edges, faces
in a polyhedron that is homeomorph to a sphere.

 Then,

§  Examples:

V = 8
E = 12
F = 6

V = 8
E = 12+1
F = 6 +1

V = 8+1
E = 12+1+1
F = 6 +1

V � E + F = 2

G. Zachmann 54 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Proof (given by Cauchy)

§  Given: a closed mesh (Polyhedron)

§  First Idea:

§  Remove one facet (yields an open mesh; the border is exactly the edge
cycle of the removed facet)

§  Stretch the mesh by pulling its border apart until it becomes a planar
graph (works only if the polyhedron is homeomorph to a sphere)

§  It remains to show:

§  Second Idea: triangulate the graph (i.e., the mesh)

§  Draw diagonals in all facets with more than 3 vertices

§  For the new feature count we have

V � E + F = 1

V � � E � + F � = V � (E + 1) + (F + 1) = V � E + F

G. Zachmann 55 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  The graph has a border; triangles have 0, 1, or 2 "border edges"

§  Repeat one of the following two transformations:

§  If there is a triangle with exactly one border edge,
remove this triangle ; it follows that

§  If there is a triangle with exactly two border edges,
remove the triangle ; it follows that

§  Repeat, until only one triangle remains

§  For that triangle, the Euler equation is obviously correct

§  Because each of the above transformations did not change the value of
V-E+F, the equation is also true for the original graph, hence for the
original mesh

V � � E � + F � = V � (E � 1) + (F � 1) = V � E + F

V � � E � + F � = (V � 1)� (E � 2) + (F � 1) = V � E + F

G. Zachmann 57 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Application of Euler's Equation to Meshes

§  Euler's Equation → relationship between #triangles and
#vertices in a closed triangle mesh

§  In a closed triangle mesh,
each edge is incident to exactly 2 triangles , so

§  Plug this into Euler's equation:

§  Therefore, for large triangle meshes

3F = 2E

2 = V � 3

2
F + F ⇥ 1

2
F = V –2

F � 2V

G. Zachmann 58 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Application of Euler's Equation to the Platonic Solids

§  Definition Platonic Solid:
 a convex polyhedron, consisting of a number of
 congruent regular polyhedra

§  Theorem (Euklid):
 There are exactly five platonic solids.

G. Zachmann 59 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Proof

§  All facets have the same number of edges = n; therefore:

§  All vertices have the same number of incident edges = m;
therefore

§  Plugging this into Euler's equation:

§  Yields the following condition on m and n:

2E = nF � F =
2

n
E

2E = mV � V =
2

m
E

2 = V � E + F =
2

m
E � E +

2

n
E ⇥ 2

E
=

2

m
� 1 +

2

n

1

m
+

1

n
=

1

2
+

1

E
>

1

2

G. Zachmann 60 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Additional condition: m and n both must be ≥ 3

§  Which {m,n} fulfill these conditions:

 {3,3} {3,4} {4,3} {5,3} {3,5}

G. Zachmann 61 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Digression: Platonic Solids in the Arts

§  The platonic solids have been known at least 1000 years before
Plato in Scotland

G. Zachmann 62 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Portrait of Johannes Neudörfer and his Son
Nicolas Neufchatel, 1527—1590

Dürer: Melencolia I

G. Zachmann 64 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

The Euler Characteristic

§  Caution: the Euler equation holds only for polyhedra, that are
topologically equivalent to a sphere!

§  Examples:

§  But: the quantity V-E+F stays the same no matter how the
polyhedron is deformed (homeomorph)
→ so the quantity V-E+F is a topologic invariant

Tetrahemihexahedron Octahemioctahedron Cubohemioctahedron

V-E+F 6 - 12 + 7 = 1 12 - 24 + 12 = 0 12 - 24 + 10 = -2

G. Zachmann 65 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Definition Euler characteristic:

§  Examples:

2 0 -2

0 0 -4

� = V � E + F

G. Zachmann 66 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  The Euler characteristic is even independent of the tessellation!

Euler Poincaré Characteristic: 2/5Euler-Poincaré Characteristic: 2/5

�Euler-Poincaré characteristic Ȥ(M) = V-E+F is
independent of tessellation.

V=24, E=48, F=22
Ȥ(M) =V-E+F=-2

V=16, E=32, F=16 V=28, E=56, F=26V=16 E=36 F=20

11

V 16, E 32, F 16
Ȥ(M) =V-E+F=0

V 28, E 56, F 26
Ȥ(M) =V-E+F=-2

V 16, E 36, F 20
Ȥ(M) =V-E+F=0

V = 16
E = 32
F = 16
𝝌 = 0 = 0

V = 16
E = 36
F = 20
𝝌 = 0 = 0

V = 28
E = 56
F = 26
𝝌 = -2 = -2

V = 24
E = 48
F = 22
𝝌 = -2 = -2

G. Zachmann 67 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Beware: sometimes it is not easy
to determine the genus!

§  Example: genus = 2

§  "Proof": deform topologically equivalently, until the genus is obvious

1. 2. 3.

G. Zachmann 68 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  What is the genus of this object?

Global Topology: GenusGlobal�Topology:�Genus

GenusGenus:�:�
Half�the�maximal�number�of�closed�paths�that�do�not�disconnect�

the�mesh�(=�the�number�of�holes)

Genus 1 Genus 2Genus 0 Genus ?

G. Zachmann 69 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Homeomorphisms: 3/3Homeomorphisms: 3/3

�Hence, any orientable 2-manifold mesh without
boundary is homeomorphic to a sphere with m
handles (i.e., genus m), where m t 0.

17

The Euler-Poincaré Equation

§  Generalization of the Euler equation for 2-manifold closed
surfaces (possibly with several components):

§  G = # handles, S = # shells (Schalen / Komponenten)

§  G is called "Genus"

§  Handle (hole, Loch): a piece of string inside a
handle cannot be shrunk towards a single point

§  Shell (Schale): by walking on the surface of a shell, each point can be
reached

§ We can even cut out so-called "voids" (Aushöhlungen) by "inner"
shells

§  There are many more generalizations!

V � E + F = 2(S � G)

G. Zachmann 70 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Examples:

§  V = 16, E = 28, F = 14, S = 1, G = 0:
 V - E + F = 2 = 2(S - G)

§  V = 16, E = 32, F = 16, S = 1, G = 1:
 V - E + F = 0 = 2(S - G)

§  V = 16+8, E = 32+12, F = 16+6, G = 1, S = 2:
 V - E + F = 2 = 2(S - G)

G. Zachmann 71 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Theorem:
Assume we are given a closed and orientable mesh consisting of
just one shell. Then the following holds:
The Euler characteristic 𝝌 = 2, 0, -2, … ⇔ = 2, 0, -2, … ⇔
the mesh is topologically equivalent to a sphere, a torus, a
double torus, etc. …

G. Zachmann 72 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Definition "regular quad mesh":
Each face of the mesh is a quadrangle
(a.k.a. quad, quadrilateral),
and each vertex has degree 4.

§  Application 1:
Each closed, orientable, regular
quad mesh must be topologically
equivalent to a torus

§  Proof:

§  In such a mesh we have: 4V = 2E ⟶ V = ½ E

§  By counting the edges via the faces: 4F = 2E ⟶ F = ½ E

§  Therefore 𝝌 (M) = V - E + F = 0 ⟶ M = torus (by previous theorem)

Applications: 2/3Applications: 2/3

�Only a torus can be a regular quad mesh!
�Since each vertex has 4 edges and each edge is g g

counted twice, we have 4V = 2E (i.e., V=E/2).
�Since each face has 4 edges and each edge is�Since each face has 4 edges and each edge is

counted twice, we have 4F = 2E (i.e., F = E/2).
�Thus F(M) = V-E+F = 0 means a torus!�Thus, F(M) = V-E+F = 0 means a torus!

19

(3,3,0) (3,4,0) (3,5,0) (4,3,0)
Tetrahedron Octahedron Icosahedron Cube

Figure 4: Regular genus-0 meshes with both n and m larger than
2(See Figure 1 for (5,3,0), dodecahedron).

This equation has only three integer solutions: (4,4,1), (3,6,1)
and (6,3,1). These solutions correspond classical regular tessella-
tions of an infinite plane [Grunbaum and Shephard 1987; Williams
1972].

For (4,4,1) case, value of e should be an even number since
e = 2v = 2 f . Therefore, vertices, faces and edges of any regu-
lar mesh (4,4,1) can be given as f = k, v = k and e = 2k where
k = 1,2, For v = f = 1 and e = 2, we get the simplest genus-1
mesh shown in Figure 5(A). If we apply a 4-conversion subdivi-
sion scheme such as Doo-Sabin [Doo and Sabin 1978; Sabin 2000],
Catmull-Clark [Catmull and Clark 1978], Simplest [Peters and Reif
1997] or dual of Simplest [Zorin and Schröder 2002] to an (4,4,1)
mesh, we obtain another (denser) (4,4,1) mesh.

For (3,6,1) case, 2e = 6v = 3 f , so f should be an even number,
v should be twice of f and e = 3v. Therefore, vertices, faces and
edges of any regular mesh (3,6,1) can be given as v = k, f = 2k
and e = 3k where k = 1,2, For v = 1, f = 2 and e = 3, we get
the simplest (3,6,1) genus-1 mesh. An example of regular mesh
(3,6,1) is shown in Figure 6(A). If we apply a triangle based sub-
division scheme such as Loop [Loop 1987] or

p
3 [Kobbelt 2000]

to an (3,6,1) mesh, we obtain other (denser) (3,6,1) meshes.

For (6,3,1) case, 2e = 6 f = 3v, so v should be an even number,
f should be twice of v and e = 3 f . Therefore, vertices, faces and
edges of any regular mesh (6,3,1) can be given as f = k, v = 2k
and e = 3k where k = 1,2, For f = 1, v = 2 and e = 3, we get
the simplest (6,3,1) genus-1 mesh. An example of regular mesh
(6,3,1) is shown in Figure 7(A). If we apply a hexagonal based
subdivision scheme such as dual of Loop [Prautzsch and Boehm
2000] or dual of

p
3 [Claes et al. 2002; Akleman and Srinivasan

November 2002; Oswald and Schröder 2003] to an (6,3,1) mesh,
we obtain other (denser) (6,3,1) meshes.

(A) (B) (C)

Figure 5: Regular (4,4,1).

4 Regular Genus¿1 Meshes

For g > 1 if we rearrange the Euler-Poincare equation, we find the
following equations for e,v, and f .

Figure 6: Examples of regular (3,6,1)meshes.

Figure 7: Examples of regular (6,3,1) meshes.

e=
2nm

nm�2n�2m (g�1) (9)

f =
4m

nm�2n�2m (g�1) (10)

v=
4n

nm�2n�2m (g�1) (11)

Integral solutions to these equations makes necessary conditions for
regular meshes.

Theorem 4.1 There exist infinitely many integer solutions to equa-
tions (9), (10) and (11).

PROOF.

• Let there exist a value of g = g1 such that equations (9), (10)
and (11) give integer solution with e= e1, v= v1 and f = f1.
Then for any gk = k(g1�1)+1 where k = 1,2, ... there exist
integer solutions e= ke1, v= kv1 and f = k f1.

• Let g1 = nm�2n�2m+1, then the integer solutions to equa-
tions (9), (10) and (11) are e= 2nm, v= 4n and f = 4m.

Theorem 4.2 If for given n, m, and g> 1, a regular mesh exists for
(n,m,g), then we can construct regular meshes (n,m,k(g�1)+1)
for any k � 1 from (n,m,g).

PROOF. Suppose that M is an (n,m,g) regular mesh, where g >
1, and that SM is the corresponding 2-manifold. We perform the
following topological operations on SM :

• Cut a handle along a circle C that does not pass through any
vertex ofM (note that this is always possible since the meshM
has only finitely many vertices on the surface SM). This leaves
a 2-manifold S0 with two “holes” H1 and H2 (see Figure 8);

• make k copies of the above structure S0: S01, . . ., S
0
k;

• arrange the k copies of the structure S01, . . ., S
0
k as a ring, and

paste the hole H1 in S0i with the hole H2 in S0i+1 for all i, 1
i k (here we have let S0k+1 = S01) and let the related edges
in M crossing the boundaries of the holes H1 and H2 aligned
properly (see Figure 9).

G. Zachmann 73 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

Regular Meshes

§  Definition:
A regular (n,m,g)-mesh is a closed, orientable mesh, with genus g,
where each facet has exactly n edges, and each vertex has exactly
degree m.

§  Examples:

§  The (n,m,0)-meshes are exactly the Platonic solids.

§  The regular quad mesh is a regular (4,4,1)-mesh

G. Zachmann 74 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  In a regular mesh we have

§  Plugging that into the Euler equation, we obtain

§  For regular genus-1 meshes we have:

§  The only possible integer
solutions are: (4, 4, 1) (3, 6, 1) (6, 3, 1)

nf = 2e = mv

1.2 Motivation for Studying Regular Meshes

Our motivation to study regular meshes comes from understand-
ing the power of various mesh modeling approaches. One of our
recent work [Srinivasan and Akleman 2004] suggested that sub-
division schemes [Zorin and P. Schröder 2000] are more power-
ful than various fractal schemes such as Iterated Function Systems
(IFS) [Barnsley 1988; Mandelbrot 1980]. Another one of our re-
cent results [Akleman et al. 2004] further showed the limitations
of subdivision schemes. This paper implicitly shows that vast ma-
jority of regular meshes cannot be created by subdivision schemes
(There are, of course, some exceptions such as (4,4,1), (6,3,1) and
(3,6,1)). Moreover, it is possible to create dodecahedron (3,5,0)
from tetrahedron (3,3,0) by using pentagonal conversion algorithm
[Akleman et al. 2004]. Simplest subdivision [Peters and Reif 1997]
can create octahedron (3,5,0) from tetrahedron (3,3,0).

Another motivation for studying regular meshes is texture mapping.
The regular meshes in the form of (3,m,g) and (4,m,g) provide
nice triangular and quadrilateral subdivisions of high genus sur-
faces. These quadrilateral or triangular patches can seamlessly be
covered by aperiodic tiles [Stam 1997; Neyret and Cani 1999; Co-
hen et al. 2003]. (3,m,g) and (4,m,g) can also provide a frame-
work to describe control meshes for patch modeling [Takahashi
et al. 1997].We also think that regular meshes will eventually be
useable for topological simplification of meshes. Regular meshes
can also be useful for morphing high genus surfaces from one to an-
other. We note that there has been extensive literature in mathemat-
ical research on the related topics [?; Cromwell 1997; Grunbaum
and Shephard 1987]. For example, regular meshes on surfaces of
genus 1 and 2 has been investigated by Brahana [Brahana 1926]
and regular polyhedra for infinite genus is discovered by Coxeter
(6,6,∞) (6,4,∞) and (4,6,∞) [Coxeter 1937; Gott 1967; Bulatov
2005; Green 2005]

2 Euler Equation

In topological mesh modeling, our only concern is mesh structure;
how faces, edges and vertices are related with each other. Euler
equation is the fundamental equation that gives the relationship be-
tween the number of faces, f , the number of edges, e, and the num-
ber of vertices v. Using Euler-Poincare equation, without using
geometric properties, we can identify some essential properties of
manifold meshes. Euler-Poincare equation is given as follows:

f � e+ v= 2�2g (1)

where g is the total number of handles in the surface, called genus.

Using Euler-Poincare equation, it is possible to systematically
search for regular meshes. First note that if all faces have the same
number of sides n and all vertices has the same valence m, we can
obtain the following relationships:

n f = 2e (2)

mv= 2e (3)

If we plug in these relationships in Euler-Poincare equation, we
obtain a simplified equation

✓
1
n

+
1
m
� 1
2

◆
e= 1�g. (4)

The integer solutions of these equations for any given n,m,g give
us an idea about regular manifold meshes for that triplet. But, note
that having integer solutions to equation (4) alone does not prove
existence of the regular mesh.

3 Regular Genus-0 Meshes

For genus-0 surfaces, the equations (2), (3) and (4) can be further
simplified to the followings.

e=
2nm

2n�2m+nm
(5)

v=
4m

2n�2m+nm
(6)

f =
4n

2n�2m+nm
(7)

3.1 Manifold Polygons and Their Duals

The polygons can be defined as meshes in which all vertices are
valence-2. If we plug in m = 2 to Equations (5), (2(and (3), we
simply get e = n, f = 2 and v = n. In other words, in this case,
there are exactly n edges and vertices, which is also the number
of the sides of the faces; and there are only two faces; i.e. these
are two-sided (manifold) polygons. Some examples of manifold
polygons are shown in Figure 3

A B C D

Figure 3: Polygon-manifolds: A. (2,2,0), Two-gon; B. (3,2,0),
Triangle; C. (4,2,0), Quadrilateral; D. (5,2,0), Pentagon.

If we choose polygons as two-gons, i.e. n = 2, we simply get the
dual of the manifold-polygons. In this case, there will be only two
vertices, the number of edges and faces will be e= f = m.

3.2 Regular Platonic Meshes

Regular genus-0 meshes also include platonic meshes, which are
generalized version of platonic polyhedra [Stewart 1991; Williams
1972; Wells 1991], and regular polygons. Regular or Platonic poly-
hedra are defined by a set of geometric conditions. However, we do
not need any geometric condition to find mesh structures of regular
polyhedra. For both n and m larger than 2, we obtain those mesh
structures as (3,3,0), (3,4,0), (3,5,0), (4,3,0) and (5,3,0) (See
Figures 4 and 1).

3.3 Regular Genus-1 Meshes

For g= 1 the Euler-Poincare equation greatly simplifies

nm�2n�2m= 0 (8)

1.2 Motivation for Studying Regular Meshes

Our motivation to study regular meshes comes from understand-
ing the power of various mesh modeling approaches. One of our
recent work [Srinivasan and Akleman 2004] suggested that sub-
division schemes [Zorin and P. Schröder 2000] are more power-
ful than various fractal schemes such as Iterated Function Systems
(IFS) [Barnsley 1988; Mandelbrot 1980]. Another one of our re-
cent results [Akleman et al. 2004] further showed the limitations
of subdivision schemes. This paper implicitly shows that vast ma-
jority of regular meshes cannot be created by subdivision schemes
(There are, of course, some exceptions such as (4,4,1), (6,3,1) and
(3,6,1)). Moreover, it is possible to create dodecahedron (3,5,0)
from tetrahedron (3,3,0) by using pentagonal conversion algorithm
[Akleman et al. 2004]. Simplest subdivision [Peters and Reif 1997]
can create octahedron (3,5,0) from tetrahedron (3,3,0).

Another motivation for studying regular meshes is texture mapping.
The regular meshes in the form of (3,m,g) and (4,m,g) provide
nice triangular and quadrilateral subdivisions of high genus sur-
faces. These quadrilateral or triangular patches can seamlessly be
covered by aperiodic tiles [Stam 1997; Neyret and Cani 1999; Co-
hen et al. 2003]. (3,m,g) and (4,m,g) can also provide a frame-
work to describe control meshes for patch modeling [Takahashi
et al. 1997].We also think that regular meshes will eventually be
useable for topological simplification of meshes. Regular meshes
can also be useful for morphing high genus surfaces from one to an-
other. We note that there has been extensive literature in mathemat-
ical research on the related topics [?; Cromwell 1997; Grunbaum
and Shephard 1987]. For example, regular meshes on surfaces of
genus 1 and 2 has been investigated by Brahana [Brahana 1926]
and regular polyhedra for infinite genus is discovered by Coxeter
(6,6,∞) (6,4,∞) and (4,6,∞) [Coxeter 1937; Gott 1967; Bulatov
2005; Green 2005]

2 Euler Equation

In topological mesh modeling, our only concern is mesh structure;
how faces, edges and vertices are related with each other. Euler
equation is the fundamental equation that gives the relationship be-
tween the number of faces, f , the number of edges, e, and the num-
ber of vertices v. Using Euler-Poincare equation, without using
geometric properties, we can identify some essential properties of
manifold meshes. Euler-Poincare equation is given as follows:

f � e+ v= 2�2g (1)

where g is the total number of handles in the surface, called genus.

Using Euler-Poincare equation, it is possible to systematically
search for regular meshes. First note that if all faces have the same
number of sides n and all vertices has the same valence m, we can
obtain the following relationships:

n f = 2e (2)

mv= 2e (3)

If we plug in these relationships in Euler-Poincare equation, we
obtain a simplified equation

✓
1
n

+
1
m
� 1
2

◆
e= 1�g. (4)

The integer solutions of these equations for any given n,m,g give
us an idea about regular manifold meshes for that triplet. But, note
that having integer solutions to equation (4) alone does not prove
existence of the regular mesh.

3 Regular Genus-0 Meshes

For genus-0 surfaces, the equations (2), (3) and (4) can be further
simplified to the followings.

e=
2nm

2n�2m+nm
(5)

v=
4m

2n�2m+nm
(6)

f =
4n

2n�2m+nm
(7)

3.1 Manifold Polygons and Their Duals

The polygons can be defined as meshes in which all vertices are
valence-2. If we plug in m = 2 to Equations (5), (2(and (3), we
simply get e = n, f = 2 and v = n. In other words, in this case,
there are exactly n edges and vertices, which is also the number
of the sides of the faces; and there are only two faces; i.e. these
are two-sided (manifold) polygons. Some examples of manifold
polygons are shown in Figure 3

A B C D

Figure 3: Polygon-manifolds: A. (2,2,0), Two-gon; B. (3,2,0),
Triangle; C. (4,2,0), Quadrilateral; D. (5,2,0), Pentagon.

If we choose polygons as two-gons, i.e. n = 2, we simply get the
dual of the manifold-polygons. In this case, there will be only two
vertices, the number of edges and faces will be e= f = m.

3.2 Regular Platonic Meshes

Regular genus-0 meshes also include platonic meshes, which are
generalized version of platonic polyhedra [Stewart 1991; Williams
1972; Wells 1991], and regular polygons. Regular or Platonic poly-
hedra are defined by a set of geometric conditions. However, we do
not need any geometric condition to find mesh structures of regular
polyhedra. For both n and m larger than 2, we obtain those mesh
structures as (3,3,0), (3,4,0), (3,5,0), (4,3,0) and (5,3,0) (See
Figures 4 and 1).

3.3 Regular Genus-1 Meshes

For g= 1 the Euler-Poincare equation greatly simplifies

nm�2n�2m= 0 (8)
(3,3,0) (3,4,0) (3,5,0) (4,3,0)

Tetrahedron Octahedron Icosahedron Cube

Figure 4: Regular genus-0 meshes with both n and m larger than
2(See Figure 1 for (5,3,0), dodecahedron).

This equation has only three integer solutions: (4,4,1), (3,6,1)
and (6,3,1). These solutions correspond classical regular tessella-
tions of an infinite plane [Grunbaum and Shephard 1987; Williams
1972].

For (4,4,1) case, value of e should be an even number since
e = 2v = 2 f . Therefore, vertices, faces and edges of any regu-
lar mesh (4,4,1) can be given as f = k, v = k and e = 2k where
k = 1,2, For v = f = 1 and e = 2, we get the simplest genus-1
mesh shown in Figure 5(A). If we apply a 4-conversion subdivi-
sion scheme such as Doo-Sabin [Doo and Sabin 1978; Sabin 2000],
Catmull-Clark [Catmull and Clark 1978], Simplest [Peters and Reif
1997] or dual of Simplest [Zorin and Schröder 2002] to an (4,4,1)
mesh, we obtain another (denser) (4,4,1) mesh.

For (3,6,1) case, 2e = 6v = 3 f , so f should be an even number,
v should be twice of f and e = 3v. Therefore, vertices, faces and
edges of any regular mesh (3,6,1) can be given as v = k, f = 2k
and e = 3k where k = 1,2, For v = 1, f = 2 and e = 3, we get
the simplest (3,6,1) genus-1 mesh. An example of regular mesh
(3,6,1) is shown in Figure 6(A). If we apply a triangle based sub-
division scheme such as Loop [Loop 1987] or

p
3 [Kobbelt 2000]

to an (3,6,1) mesh, we obtain other (denser) (3,6,1) meshes.

For (6,3,1) case, 2e = 6 f = 3v, so v should be an even number,
f should be twice of v and e = 3 f . Therefore, vertices, faces and
edges of any regular mesh (6,3,1) can be given as f = k, v = 2k
and e = 3k where k = 1,2, For f = 1, v = 2 and e = 3, we get
the simplest (6,3,1) genus-1 mesh. An example of regular mesh
(6,3,1) is shown in Figure 7(A). If we apply a hexagonal based
subdivision scheme such as dual of Loop [Prautzsch and Boehm
2000] or dual of

p
3 [Claes et al. 2002; Akleman and Srinivasan

November 2002; Oswald and Schröder 2003] to an (6,3,1) mesh,
we obtain other (denser) (6,3,1) meshes.

(A) (B) (C)

Figure 5: Regular (4,4,1).

4 Regular Genus¿1 Meshes

For g > 1 if we rearrange the Euler-Poincare equation, we find the
following equations for e,v, and f .

Figure 6: Examples of regular (3,6,1)meshes.

Figure 7: Examples of regular (6,3,1) meshes.

e=
2nm

nm�2n�2m (g�1) (9)

f =
4m

nm�2n�2m (g�1) (10)

v=
4n

nm�2n�2m (g�1) (11)

Integral solutions to these equations makes necessary conditions for
regular meshes.

Theorem 4.1 There exist infinitely many integer solutions to equa-
tions (9), (10) and (11).

PROOF.

• Let there exist a value of g = g1 such that equations (9), (10)
and (11) give integer solution with e= e1, v= v1 and f = f1.
Then for any gk = k(g1�1)+1 where k = 1,2, ... there exist
integer solutions e= ke1, v= kv1 and f = k f1.

• Let g1 = nm�2n�2m+1, then the integer solutions to equa-
tions (9), (10) and (11) are e= 2nm, v= 4n and f = 4m.

Theorem 4.2 If for given n, m, and g> 1, a regular mesh exists for
(n,m,g), then we can construct regular meshes (n,m,k(g�1)+1)
for any k � 1 from (n,m,g).

PROOF. Suppose that M is an (n,m,g) regular mesh, where g >
1, and that SM is the corresponding 2-manifold. We perform the
following topological operations on SM :

• Cut a handle along a circle C that does not pass through any
vertex ofM (note that this is always possible since the meshM
has only finitely many vertices on the surface SM). This leaves
a 2-manifold S0 with two “holes” H1 and H2 (see Figure 8);

• make k copies of the above structure S0: S01, . . ., S
0
k;

• arrange the k copies of the structure S01, . . ., S
0
k as a ring, and

paste the hole H1 in S0i with the hole H2 in S0i+1 for all i, 1
i k (here we have let S0k+1 = S01) and let the related edges
in M crossing the boundaries of the holes H1 and H2 aligned
properly (see Figure 9).

(3,3,0) (3,4,0) (3,5,0) (4,3,0)
Tetrahedron Octahedron Icosahedron Cube

Figure 4: Regular genus-0 meshes with both n and m larger than
2(See Figure 1 for (5,3,0), dodecahedron).

This equation has only three integer solutions: (4,4,1), (3,6,1)
and (6,3,1). These solutions correspond classical regular tessella-
tions of an infinite plane [Grunbaum and Shephard 1987; Williams
1972].

For (4,4,1) case, value of e should be an even number since
e = 2v = 2 f . Therefore, vertices, faces and edges of any regu-
lar mesh (4,4,1) can be given as f = k, v = k and e = 2k where
k = 1,2, For v = f = 1 and e = 2, we get the simplest genus-1
mesh shown in Figure 5(A). If we apply a 4-conversion subdivi-
sion scheme such as Doo-Sabin [Doo and Sabin 1978; Sabin 2000],
Catmull-Clark [Catmull and Clark 1978], Simplest [Peters and Reif
1997] or dual of Simplest [Zorin and Schröder 2002] to an (4,4,1)
mesh, we obtain another (denser) (4,4,1) mesh.

For (3,6,1) case, 2e = 6v = 3 f , so f should be an even number,
v should be twice of f and e = 3v. Therefore, vertices, faces and
edges of any regular mesh (3,6,1) can be given as v = k, f = 2k
and e = 3k where k = 1,2, For v = 1, f = 2 and e = 3, we get
the simplest (3,6,1) genus-1 mesh. An example of regular mesh
(3,6,1) is shown in Figure 6(A). If we apply a triangle based sub-
division scheme such as Loop [Loop 1987] or

p
3 [Kobbelt 2000]

to an (3,6,1) mesh, we obtain other (denser) (3,6,1) meshes.

For (6,3,1) case, 2e = 6 f = 3v, so v should be an even number,
f should be twice of v and e = 3 f . Therefore, vertices, faces and
edges of any regular mesh (6,3,1) can be given as f = k, v = 2k
and e = 3k where k = 1,2, For f = 1, v = 2 and e = 3, we get
the simplest (6,3,1) genus-1 mesh. An example of regular mesh
(6,3,1) is shown in Figure 7(A). If we apply a hexagonal based
subdivision scheme such as dual of Loop [Prautzsch and Boehm
2000] or dual of

p
3 [Claes et al. 2002; Akleman and Srinivasan

November 2002; Oswald and Schröder 2003] to an (6,3,1) mesh,
we obtain other (denser) (6,3,1) meshes.

(A) (B) (C)

Figure 5: Regular (4,4,1).

4 Regular Genus¿1 Meshes

For g > 1 if we rearrange the Euler-Poincare equation, we find the
following equations for e,v, and f .

Figure 6: Examples of regular (3,6,1)meshes.

Figure 7: Examples of regular (6,3,1) meshes.

e=
2nm

nm�2n�2m (g�1) (9)

f =
4m

nm�2n�2m (g�1) (10)

v=
4n

nm�2n�2m (g�1) (11)

Integral solutions to these equations makes necessary conditions for
regular meshes.

Theorem 4.1 There exist infinitely many integer solutions to equa-
tions (9), (10) and (11).

PROOF.

• Let there exist a value of g = g1 such that equations (9), (10)
and (11) give integer solution with e= e1, v= v1 and f = f1.
Then for any gk = k(g1�1)+1 where k = 1,2, ... there exist
integer solutions e= ke1, v= kv1 and f = k f1.

• Let g1 = nm�2n�2m+1, then the integer solutions to equa-
tions (9), (10) and (11) are e= 2nm, v= 4n and f = 4m.

Theorem 4.2 If for given n, m, and g> 1, a regular mesh exists for
(n,m,g), then we can construct regular meshes (n,m,k(g�1)+1)
for any k � 1 from (n,m,g).

PROOF. Suppose that M is an (n,m,g) regular mesh, where g >
1, and that SM is the corresponding 2-manifold. We perform the
following topological operations on SM :

• Cut a handle along a circle C that does not pass through any
vertex ofM (note that this is always possible since the meshM
has only finitely many vertices on the surface SM). This leaves
a 2-manifold S0 with two “holes” H1 and H2 (see Figure 8);

• make k copies of the above structure S0: S01, . . ., S
0
k;

• arrange the k copies of the structure S01, . . ., S
0
k as a ring, and

paste the hole H1 in S0i with the hole H2 in S0i+1 for all i, 1
i k (here we have let S0k+1 = S01) and let the related edges
in M crossing the boundaries of the holes H1 and H2 aligned
properly (see Figure 9).

(1)

(2)

G. Zachmann 75 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Theorem:
There are infinitely many regular (n,m,g)-meshes for all pairs
(n,m) with nm – 2n – 2m > 0.

§  Proof:

§  Rewrite equations (1) and (2)

(3,3,0) (3,4,0) (3,5,0) (4,3,0)
Tetrahedron Octahedron Icosahedron Cube

Figure 4: Regular genus-0 meshes with both n and m larger than
2(See Figure 1 for (5,3,0), dodecahedron).

This equation has only three integer solutions: (4,4,1), (3,6,1)
and (6,3,1). These solutions correspond classical regular tessella-
tions of an infinite plane [Grunbaum and Shephard 1987; Williams
1972].

For (4,4,1) case, value of e should be an even number since
e = 2v = 2 f . Therefore, vertices, faces and edges of any regu-
lar mesh (4,4,1) can be given as f = k, v = k and e = 2k where
k = 1,2, For v = f = 1 and e = 2, we get the simplest genus-1
mesh shown in Figure 5(A). If we apply a 4-conversion subdivi-
sion scheme such as Doo-Sabin [Doo and Sabin 1978; Sabin 2000],
Catmull-Clark [Catmull and Clark 1978], Simplest [Peters and Reif
1997] or dual of Simplest [Zorin and Schröder 2002] to an (4,4,1)
mesh, we obtain another (denser) (4,4,1) mesh.

For (3,6,1) case, 2e = 6v = 3 f , so f should be an even number,
v should be twice of f and e = 3v. Therefore, vertices, faces and
edges of any regular mesh (3,6,1) can be given as v = k, f = 2k
and e = 3k where k = 1,2, For v = 1, f = 2 and e = 3, we get
the simplest (3,6,1) genus-1 mesh. An example of regular mesh
(3,6,1) is shown in Figure 6(A). If we apply a triangle based sub-
division scheme such as Loop [Loop 1987] or

p
3 [Kobbelt 2000]

to an (3,6,1) mesh, we obtain other (denser) (3,6,1) meshes.

For (6,3,1) case, 2e = 6 f = 3v, so v should be an even number,
f should be twice of v and e = 3 f . Therefore, vertices, faces and
edges of any regular mesh (6,3,1) can be given as f = k, v = 2k
and e = 3k where k = 1,2, For f = 1, v = 2 and e = 3, we get
the simplest (6,3,1) genus-1 mesh. An example of regular mesh
(6,3,1) is shown in Figure 7(A). If we apply a hexagonal based
subdivision scheme such as dual of Loop [Prautzsch and Boehm
2000] or dual of

p
3 [Claes et al. 2002; Akleman and Srinivasan

November 2002; Oswald and Schröder 2003] to an (6,3,1) mesh,
we obtain other (denser) (6,3,1) meshes.

(A) (B) (C)

Figure 5: Regular (4,4,1).

4 Regular Genus¿1 Meshes

For g > 1 if we rearrange the Euler-Poincare equation, we find the
following equations for e,v, and f .

Figure 6: Examples of regular (3,6,1)meshes.

Figure 7: Examples of regular (6,3,1) meshes.

e=
2nm

nm�2n�2m (g�1) (9)

f =
4m

nm�2n�2m (g�1) (10)

v=
4n

nm�2n�2m (g�1) (11)

Integral solutions to these equations makes necessary conditions for
regular meshes.

Theorem 4.1 There exist infinitely many integer solutions to equa-
tions (9), (10) and (11).

PROOF.

• Let there exist a value of g = g1 such that equations (9), (10)
and (11) give integer solution with e= e1, v= v1 and f = f1.
Then for any gk = k(g1�1)+1 where k = 1,2, ... there exist
integer solutions e= ke1, v= kv1 and f = k f1.

• Let g1 = nm�2n�2m+1, then the integer solutions to equa-
tions (9), (10) and (11) are e= 2nm, v= 4n and f = 4m.

Theorem 4.2 If for given n, m, and g> 1, a regular mesh exists for
(n,m,g), then we can construct regular meshes (n,m,k(g�1)+1)
for any k � 1 from (n,m,g).

PROOF. Suppose that M is an (n,m,g) regular mesh, where g >
1, and that SM is the corresponding 2-manifold. We perform the
following topological operations on SM :

• Cut a handle along a circle C that does not pass through any
vertex ofM (note that this is always possible since the meshM
has only finitely many vertices on the surface SM). This leaves
a 2-manifold S0 with two “holes” H1 and H2 (see Figure 8);

• make k copies of the above structure S0: S01, . . ., S
0
k;

• arrange the k copies of the structure S01, . . ., S
0
k as a ring, and

paste the hole H1 in S0i with the hole H2 in S0i+1 for all i, 1
i k (here we have let S0k+1 = S01) and let the related edges
in M crossing the boundaries of the holes H1 and H2 aligned
properly (see Figure 9).

G. Zachmann 76 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

§  Let g1 = nm – 2n – 2m ;
then e1 = 2nm, v1 = 4n, f1 = 4m are solutions of the 3 equations.

§  Let gk = k(g1 – 1) + 1 , k = 1, 2, … ;
then ek = ke1 , vk = kv1 , fk = kf1 are solutions, too

§  Remark: the proof does not tell us how to construct such meshes.

§  Example: a (4,5,2)-mesh

Figure 11: A view of (4,5,2) that is obtained by applying the oper-
ation given in Figure 10 twice to a cube.

However, the theorem does not guarantee to get the regular mesh
with smallest g. For instance, for n = 4 and m = 6, using the the-
orem we obtain (4,6,3), however, the simplest regular mesh with
n = 4 and m = 6 is (4,6,2) as shown in Figure 12 (Also see [Cox-
eter 1965]). Note that the duals of these regular meshes, (5,4,2)
and (6,4,2), also exist and constructible.

Figure 12: Two views of (4,6,2) that cannot be obtained by using
the operation presented in Theorem 4.5.

The concept behind to create a lower bound for triangular regular
meshes is similar but it requires to solve a slightly more compli-
cated problem.

Theorem 4.6 For any given m > 6, there exists an efficiently con-
structible regular mesh (3,m,m�5).

PROOF.

For n = 3, if we choose g = m� 5, then the integer solutions to
equations (9), (10) and (11) becomes e= 6m, v= 12 and f = 4m.

Now, let f0 and f1 be two triangles that do not share any vertex. We
will call these two f0 and f1 again a distinct-pair. The operation
simply connects these two faces with a handle by inserting 6 edges
as shown in Figure 13. After the operation, the initial two faces f0
and f1 cease to exist and 6 new triangles are created; i.e. the number
of triangles increases by 4. The newly created triangles consist of
more distinct-pairs, i.e. the number of distinct-pairs increases by
each application of the operations.

Figure 13: The procedure to create (3,m,m� 5). Initial two trian-
gles are f0 = (a,b,c) and f1 = (d,e, f). After 6 edge insertions, f0
and f1 disappear and 6 new triangles are created.

Let us now apply this operation to an icosahedron (3,5,0). An
icosahedron has two distinct-pairs, and therefore, the operation
must be applied twice to cover all vertices. Then, the genus in-
creases by 2 and vertex valence also increases by 2. The number
of vertices stays the same. The number of faces increases by 4. As
a result, after k iterations the regular mesh will be (3,5+ 2k,2k).
Note that here genus has always to be an even number. In other
words, we get (3,m,m�5) where m is an odd number.

It is also possible to get regular meshes with even vertex valences
and odd genera by starting from a regular mesh (3,6,1) with 12
vertices. This toroidal mesh also has two distinct-pairs, and there-
fore, the operation must again be applied twice to cover all vertices.
Similarly, the genus and vertex valence increases by 2. The number
of vertices stays the same. The number of faces increases by 4. As a
result, after k iterations the regular mesh will be (3,6+2k,2k+1).
Note that in this case genus is always an odd number. In other
words, we get (3,m,m�5) where m is an even number. This con-
cludes that we can get (3,m,m�5)for both even and odd m values.

Again, above theorem can identify (3,7,2) and its dual (7,3,2), for
g= 2. However, 3 more triangulated regular meshes exist for g= 2.
which are (3,8,2); (3,9,2); (3,12,2) [Brahana 1926]. Note that the
duals of these regular meshes, (8,3,2), (9,3,2) and (12,3,2), also
exist and constructible.

Conjecture 4.1 For any given m > 3, there exists an efficiently
constructible regular mesh (5,m,3m�9).

Conjecture 4.2 For any given m > 3, there exists an efficiently
constructible regular mesh (6,m,m�2).

Note that these conjectures also do not provide tight lower bounds.
We have already known that the regular meshes (5,5,2) and (6,6,2)
exist and constructible [Brahana 1926]. For (5,5,2) see Figure 14.
(6,6,2) can be obtained from a truncated tetrahedron. A truncated
tetrahedron consists of 4 hexagons and 4 triangles. All vertices are
valence-3. By simply pasting triangular faces, we create a genus-2
object with hexagonal faces and each vertex becomes valence-6.

Figure 14: Three views of (5,5,2).

5 Conclusion

This paper presents our preliminary results on regular meshes. Our
work shows that there exist infinitely many regular meshes for
g > 1. Moreover, we have constructive proofs that describe how
to create high genus regular meshes that consist of triangles and
quadrilaterals (3,m,g) and (4,m,g).

Regular meshes seem to be an extremely fertile area. For instance,
there are many interesting regular meshes such as (4g,4g,g), which
we did not discuss in this paper. In fact, (4g,4g,g) is widely used in

G. Zachmann 77 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

G. Zachmann 78 Boundary Representations Advanced Computer Graphics 20 June 2013 SS

