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The Problem 

§  How to store objects in versatile and efficient data structures? 

§  Definition Boundary-Representation (B-Rep): 
Objects "consist" of  

1.  Triangles, quadrangles, and polygons (i.e., geometry) 

2.  Incidence and adjacency relationships (i.e., "topology", "connectivity") 

§  By contrast, there are also representations that try to model the 
volume directly, or that consist only of individual points 
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Definitions: Graphs 

§  A graph is a pair G=(V, E), where V = {v0,v1,…,vn-1} is a non-empty 
set of n different nodes (points, vertices) and E is a set of edges 
(vi, vj). 

§  When V is a (discrete) subset of        with d ≥ 2, then G = (V, E) is 
called a geometric graph. 

§  Two edges/nodes are called neighboring or adjacent, iff they 
share a common node/edge. 

§  If e = (vi, vj) is an edge in G,  then e and  vi   are called incident (dito 
for e und vj ;  vi and vj are called neighboring or adjacent). 

§  In the following, edges will be undirected edges, and 
consequently we will denote them just by  vivj. 

§  The degree of a node/vertex := number of incident edges 

Rd
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Polygons 

§  A polygon is a geometric graph P = (V, E), where  
V = {v0,v1,…,vn-1} ⊂       ,  d ≥ 2, and E = { (v0,v1), …, (vn-1, v0 ) }. 

§  Nodes are called vertices (sometimes points or corners). 

§  A polygon is called 

§  flat, if all vertices lie in the same plane; 

§  simple, if it is flat and if the intersection of every two edges in E is either 
empty or a vertex in V, and if every vertex is incident to exactly two 
edges (i.e., if the polygon does not have self intersections). 

§  By definition, we will consider only closed polygons 

v0 v1 
v2 

v4 
v5 v6 

v3 

Rd
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Mesh (Polygonal Mesh) 

§  Let M be a set of closed, simple polygons Pi ;  
 let    

§  M is called a mesh iff 

§  the intersection of two polygons in M is either empty, a 
point v  ∈ V or an edge  e  ∈ E ; and  

§  each edge e  ∈ E  belongs to at least one polygon 
(no dangling edges) 

§  The set of all edges, belonging to one polygon only, 
is called the border of the mesh 

§  A mesh with no border is called a closed mesh 

§  The set of all points V and edges E of a mesh 
constitute a graph, too 

V =
S

i Vi E =
S

i Ei
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First Explicit Application of a Mesh for a Music Video 

Kraftwerk: Musique non Stop, 1986. Musikvideo von Rebecca Allen. 



G. Zachmann 8 Boundary Representations Advanced Computer Graphics 20 June 2013 SS 

Definition: Polyhedron 

§  A mesh is called polyhedron, if 

1.  each edge  e ∈ E  is incident to exactly two polygons (i.e., the mesh is 
closed); and 

2.  no subset of the mesh fulfills condition (1). 

§  The polygons are also called facets / faces (Facetten)  

§  Theorem (w/o proof):  
Each polyhedron P partitions space into three subsets: its surface, 
its interior, and its exterior. 

 

OK Nö Nö 
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Orientation 

§  Each facet of a mesh can be oriented by the 
definition of a vertex order 
§  Each facet can have exactly two orientations 

§  Two adjacent facets have the same 
orientation, if the common edge is traversed 
in opposite directions, when the two facets 
are traversed according to their orientation 

§  The orientation determines the surface 
normal of a facet. By convention, it is 
obtained using the right-hand-rule 
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§  A mesh is called orientable, if all facets can be oriented such that  
every two adjacent facets have the same orientation 
§  The mesh is called oriented if all facets actually do have the same   

orientation 

§  A mesh is called non-orientable, if there are 
always two adjacent facets that have 
opposite orientation, no matter   
how the orientation of all facets is chosen 

§  Theorems (w/o proof): 

§  Each non-orientable surface that is embedded in  
three-dimensional space and closed must have 
a self-intersection 

§  The surface of a polyhedron is always orientable 
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Digression: the Möbius Strip in the Arts 

Möbius Strip II, woodcut, 1963 Interlocked Gears, 
Michael Trott, 2001 

Max Bill 
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Is the Escher Knot an Orientable Mesh or Not? 

http://homepages.sover.net/~tlongtin  
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Definition: Homeomorphism 

§  Homeomorphism = bijective, continuous mapping between two 
"objects" (e.g. surfaces), the inverse mapping of which must be 
continuous too 

§  Two objects are called homeomorph iff there is a  homeomorphism 
between the two 

§  Note: don't confuse this with homomorphism or homotopy! 

§  Illustration:  

§  Squishing, stretching, twisting is allowed 

§ Making holes is not allowed 

§  Cutting is allowed only, if the object is glued together afterwards at 
exactly the same place 
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§  Homeomorph objects are also called 
topologically equivalent 

§  Examples: 
§  Disc and square 

§  Cup and torus 

§  An object and its mirror object  

§  Trefoil knot and .... ? 

§  The border of the Möbius strip and ... ? 

§  All convex polyhedra are 
homeomorphic to a sphere (and  
some non-convex ones are too) 

Trefoil knot 
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Two-Manifolds (Zwei-Mannigfaltigkeiten) 

§  Definition: a surface is called two-manifold, iff for each point on 
the surface there is an open ball such that the intersection of the 
ball and the surface is topologically equivalent at two-
dimensional disc 

§  Examples: 

§  Notice: in computer graphics, often the term "manifold" is used 
when 2-manifold is meant! 

§  The term "piecewise linear manifold" is sometimes used by 
people, to denote just a mesh …  
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Data Structures for Meshes 

§  The most naïve data structure: 

§  Array of polygons; each polygon = array of vertices 

§  Example: 

§  Problems: 

§  Vertices occurr several times! 

- Waste of memory, problems with animations, … 

§ How to find all faces, incident to a given vertex? 

§ Different array sizes for polygons with different numbers of vertices   

face[0] = 
x0 y0 z0 

x1 y1 z1 

x5 y5 z5 

x4 y4 z4 

face[1] = 
x0 y0 z0 

x4 y4 z4 

x7 y7 z7 

x3 y3 z3 v0 v1 

v2 

v4 v5 

v6 v7 

v3 

f0 

face[2] = 
x4 y4 z4 

x5 y5 z5 

x6 y6 z6 

x7 y7 z7 

. . . 
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The Indexed Face Set 

§  Idea: common "vertex pool" (shared vertices) 

§  Example: 

§  Advantage: significant memory savings 

§  1 vertex = 1 point + 1 vector (v.-normal) + uv-texture coord. = 32 bytes 

§  1 index = 1 integer                                                                         = 4 bytes 

§  Deformable objects / animations are mcuch easier 

§  Probably the most common data structure 

vertices = 
x0 y0 z0 

x1 y1 z1 

x2 y2 z2 

x3 y3 z3 

. . . 

face   vertex index 
0        0, 1, 5, 4 
1        0, 3, 7, 4 
2        4, 5, 6, 7 

. . . 
v0 v1 

v2 

v4 v5 

v6 v7 

v3 

f0 
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The OBJ File Format 

§  OBJ = indexed face set + further features 

§  Line based ASCII format 

1.  Ordered list of vertices: 

§  Introduced by "v" on the line 

§  Spatial coordinates x, y, z 

§  Index is given by the order in the file 

2.  Unordered list of polygons: 

§  A polygon is introduced by "f" 

§  Then, ordered list of vertex indices 

§  Length of list = # of edges 

§ Orientation is given by order of vertices 

§  In principle, "v" and "f" can be mixed 
arbitrarily 

v x0 y0 z0 

v x1 y1 z1 

v x2 y2 z2 

v x3 y3 z3 
 

f  0 1 2 
f 1 3 2 

(x0,y0,z0) (x1,y1,z1) 

(x2,y2,z2) (x3,y3,z3) 



G. Zachmann 20 Boundary Representations Advanced Computer Graphics 20 June 2013 SS 

More Attributes 

§  Vertex normals: 
§  prefix"vn" 
§  contains x, y, z for the normalen 
§  not necessarily normalized 
§  not necessarily in the same in the 

same order as the vertices 
§  indizes similar to vertex indices 

§  Texture coordinates: 
§  prefix "vt" 
§  not necessarily in the same in the 

same order as the vertices 
§  Contains u,v texture coordinates 

§  Polygons: 
§  use "/" as delimiter for the indices  
§  vertex / normal / texture 
§  normal and texture are optional 
§  use "//" to omit normls, if only 

texture coords are given 

v x0 y0 z0 
v x1 y1 z1 
v x2 y2 z2 
 
vn a0 b0 c0 
vn a1 b1 c1 
vn a2 b2 c2 
 
vt u0 v0 
vt u1 v1 
vt u2 v2 
 
f 0/0/0 … 
f … 

(x0,y0,z0) 
 (a0,b0,c0) 

 (u0,v0) 

(x1,y1,z1) 
(a1,b1,c1) 

(u1,v1) 

(x2,y2,z2) 
(a2,b2,c2) 

(u2,v2) 

f 0/0/0 1/1/1 2/2/2 f 0/1/0 1/1/1 2/1/2 
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§  Problems: 

§  Edges are (implicitly) stored two times 

§  Still no adjacency information (no "topology") 

§  Consequence: 

§  Finding all facets incident to a given vertex takes time O(       ), where 

n = # facets of the mesh 

§  Dito finding all vertices adjacent to another given vertex 

§  A complete mesh traversal takes time O(n2) 

-  With a mesh traversal you can, for instance, test whether an   object is closed 

-  Can be depth first or breadhth first 

n 
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Examples Where Adjacency Information is Needed 

§  Computing vertex normals 

§  Editing meshes 

§  Simulation, e.g., mass-spring systems 

p0 
n1 n4 

n3 
n2 

v 

nv 
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Example Application: Simplification 

§  Simplification: Generate a coarse mesh from a fine mesh 

§ While maintaining certain critera (will not be discussed further here) 

§  Elementary operations: 

§  Edge collapse: 

-  All edges adjacent to the edge are required 

§  Vertex removal: 

-  All edges incident to the vertex are needed 
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All Possible Connectivity Relationships 

  Given  Looking for  notation 
 ("all neighbours ..") 

1   Vertex  Vertices  V → V 

2   Vertex  Edges  V → E 

3   Vertex  Faces  V → F 

4   Edge  Vertices  E → V 

5   Edge  Edges  E → E 

6   Edge   Faces  E → F 

7   Face  Vertices  F → V 

8   Face  Edges  F → E 

9   Face   Faces  F → F 
 

 

Abstract notation of a data structure with  
all connectivity relationships: 
arrows show the incidence/adjacency info 
 

VV VF VE 

EV EF EE 

FV FF FE 

V F 

E 
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§  Example: the Indexed Face Set 

§  Question:  What is the minimal data structure, that can answer all 
neighboring queries in time O(1)? 

vertices 
x0 y0 z0 

x1 y1 z1 

x2 y2 z2 

x3 y3 z3 

. . . 

face   vertex index 
0        0, 1, 5, 4 
1        0, 3, 7, 4 
2        4, 5, 6, 7 

. . . 
= V F 

E 
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The Winged-Edge Data Structure 

§  Idea: edge-based data structure (in contrast to face-based) 

§  Observations: 

§  An edge stores two indices to 2 vertices:  e.org , e.dest 
→ yields an orientation of the edge 

§  In a closed polyhedron, each edge is incident to exactly 2 facets 

§  If it is oriented, then one  
of these facets has the same  
orientation as the edge,  
the other one is opposite 

e.org 

e.dest 

face 2 

face 1 
e 
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§  Each edge has 4 pointers to 4 adjacent edges: 

1.  e.prf = edge adjacent to e.dest and incident to right face  
            (prf = "previous right face") 

2.  e.nrf = edge adjacent to e.org and incident to right face  
            ("next right face") 

3. /4.  e.nlf / e.plf = edge adjacent to e and incident to left face ("next/
previous left face") 

 

§  Observation: if all facets  
are oriented consistently,  
then each edge occurs once 
from org⟶dest and once 
from dest⟶org 

e.org 

e.dest 

e.prf 

e.plf 

e 

e.nlf 

e.nrf 

left face 

right face 
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§  In addition:  

§  Each edge stores one pointer to the left and right facet (e.lf, e.rf) 

§  Each facet & each vertex stores one pointer to a arbitrary edge incident 
to it 

 

§  Abstract representation of the data structure: 

V F 

E 

1, sign 2 

4 

2 1 
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Example 

List of vertices 
v     coord    e 
0     0.0    0.0  0.0  0 
1     1.0  0.0  0.0  1 
2     1.0  1.0  0.0  2 
3     0.0  1.0  0.0  3 
4     0.0  0.0  1.0  8 
5     1.0  0.0  1.0  9 
6     1.0  1.0  1.0  10 
7     0.0  1.0  1.0  11 

List of edges 
e    org    dest     ncw     nccw    pcw    pccw      lf       rf 
0    v0        v1       e1       e5         e4       e3         f1      f0  
1    v1        v2       e2   e6         e5       e0         f2      f0 
2    v2        v3       e3   e7         e6       e1         f3      f0 
3    v3        v0       e0   e4         e2       e7         f4      f0 
4    v0        v4       e8   e11       e0       e3         f4      f1 
5    v1        v5       e9   e8         e1       e0         f1      f2 
6    v2        v6       e10   e9         e2       e1         f2      f3 
7    v3        v7       e11   e10       e3       e2         f3      f4 
8    v4        v5       e5   e9         e4       e11       f5      f1 
9    v5        v6       e6   e10       e5       e8         f5      f2 
10  v6        v7       e7   e11       e9       e6         f5      f3 
11  v7        v4       e4   e8         e10     e7         f5      f4 

Facets 
0    e0    - 
1    e8    - 
2    e5    - 
3    e6    - 
4    e11   - 
5    e8    + 

f1 

f3 e7 

v0 v1 

v2 

v4 v5 

v6 v7 

v3 

e0 

e1 
e2 

e3 

e4 e5 

e6 
e8 

e9 

e10 

e11 
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Example for Traversing that Data Structure 

§  Example task: enumerate all edges of f4 in CCW order: 

Edge list 
e    org    dest     ncw     nccw    pcw    pccw      lf       rf 
0    v0        v1       e1       e5         e4       e3         f1      f0  
1    v1        v2       e2   e6         e5       e0         f2      f0 
2    v2        v3       e3   e7         e6       e1         f3      f0 
3    v3        v0       e0   e4         e2       e7         f4      f0 
4    v0        v4       e8   e11       e0       e3         f4      f1 
5    v1        v5       e9   e8         e1       e0         f1      f2 
6    v2        v6       e10   e9         e2       e1         f2      f3 
7    v3        v7       e11   e10       e3       e2         f3      f4 
8    v4        v5       e5   e9         e4       e11       f5      f1 
9    v5        v6       e6   e10       e5       e8         f5      f2 
10  v6        v7       e7   e11       e9       e6         f5      f3 
11  v7        v4       e4   e8        e10      e7         f5      f4 

f1 

f3 e7 

v0 v1 

v2 

v4 v5 

v6 v7 

v3 

e0 

e1 
e2 

e3 

e4 e5 

e6 
e8 

e9 

e10 

e11 

f4 →  e11 / "-" : 

→ pccw 

v3 

e7 
v7 

v4 
e11 

e3 
v0 

e7 
v4 

v7 

v3 

e11 
Finish 

v7 
e11 

v4 

→ pccw → nccw 

e7 

e4 

v4 

v7 

e3 
v0 

v3 

e11 

→ nccw 
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§  All neighborhood/connectivity queries can be answered in 
time O(k) where (k = size of the output)  

§  3 kinds of queries can be answered directly in O(1), 
and 6 kinds of queries can be answered by a local traversal of the 
data structures around a facet or a vertex in O(k) 

§  Problem: When following edges, one has to test for each edge 
how it is oriented, in order to determine whether to follow 
n[c]cw or p[c]cw! 
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Doubly Connected Edge List   [Preparata & Müller, 1978] 

§  In computer graphics rather known as "half-edge data structure" 

§  Arguably the easiest and most efficient neighborhood data structure 

§  Idea: 

§  Like the winged-wdge DS, but with "split" edges 

§ One half-edge (= entry in the edge table) represents only one direction  
and one "side" of the complete edge 

§  The pointers stored with each half-edge: 

-  Start (org) and end vertex (dest) 

-  Incident face (on the left-hand side) 

-  Next und previous edge (in traversal order) 

-  (Originating vertex can be omitted,  
because e.org = e.twin.dest) 

e.org 

e.prev 

e 

e.face 

e.twin 
e.dest 

e.next 
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§  Abstract notation: 

§  Here without pointer to originating vertex (org) 

§  Requires twice as many entries in the edge 
table as the winged-edge DS 

V F 

E 

1 1 

2 

1 1 
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Example (Here in CW Order!) 

0

V0 V1 

v2 

v4 v5 

v6 v7 

v3 

12 7

6

5

3

4 8

9

15 

12 

13 
14 

11 

16 

17 
18 

19 

20 

10 

21 
22 

23 

Facets 
0    e20 
1    e4 
2    e0 
3    e15 
4    e16 
5    e8  

List of Vertices 
v     coord   e 
0    0.0    0.0  0.0  0 
1    1.0  0.0  0.0  1 
2    1.0  1.0  0.0  2 
3    0.0  1.0  0.0  3 
4    0.0  0.0  1.0  4 
5    1.0  0.0  1.0  9 
6    1.0  1.0  1.0  13 
7    0.0  1.0  1.0  16 

List of Half-Edges 
e    org     next  prv    twin    e    org     next  prv    twin 
0    0         1        3          6      12    2          13     15     10 
1    1         2        0          11    13    6          14     12     22 
2    2         3        1  15    14    7          15     13     19 
3    3         0        2  18    15    3          12     14     2 
4    4         5        7  20    16    7          17     19     21 
5    5         6        4   8     17    4          18     16     7 
6    1         7        5   0     18    0          19     17     3 
7    0         4        6  17    19    3          16     18     14 
8    1         9       11   5     20    5          21     23     4 
9    5        10       8  23    21    4          22     20     16 
10  6        11       9  12    22    7          23     21     13 
11  2         8       10   1     23    6          20     22     9 Also note the demo on 

http://www.holmes3d.net/graphics/dcel/  
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§  Visualization for a quad mesh: 
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Invariants in a DCEL 

§  Here, we will use the "functional notation", i.e.,  
twin(e) = e.twin 

§  Invariants (= axioms in an ADT "DCEL"): 

§  twin( twin(e) ) = e ,  if the mesh is closed 

§  org( next(e) ) = dest(e) 

§  org(e) = dest( twin(e) )       [if twin(e) is existing] 

§  org( v.edge ) = v                 [v always points to a leaving edge!] 

§  etc. … 
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Face  and Vertex Cycling 

§  Given: a closed, 2-manifold mesh 

§  Wanted: all vertices incident to a given face f   

§  Algorithm: 

§  Running time is in O(k) , with k = # vertices of f 

f 

e 

e_start ← f.edge 
e ← e_start 
repeat 
  output e.dest 
  e ← e.next 
until e == e_start 
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§  Task: report all vertices adjacent to a given vertex v 

§  Algorithm (w.l.o.g., v points to a leaving edge): 

§  Running time is in O(k) , where k = # neighbours of v 

e_start ← v.edge 
e ← e_start 
repeat 
  output e.dest 
  e ← e.twin.next 
until e == e_start 

v 

e 
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§  Terminology: a feature = a vertex or an edge or a facet 

§  Theorem:  
A DCEL over a 2-manifold mesh supports all incidence and 
adjacency queries for a given feature in time O(1) or O(k), where 
k = # neighbours. 

C
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Limitations / Extensions of the DCEL 

§  A DCEL can store only meshes that are ... 
1.  two-manifold and 

2.  orientable, and  

3.  the polygons of which do not have "holes"! 

§  Extensions: lots of them, e.g. those of Hervé Brönnimann 
§  For non-2-manifold vertices, store several pointers to incident edges 

§  Dito for facets with holes  

§  Yields several cycles of edges for such vertices/faces 

Fig. 2. An illustration of (a) facets with holes, (b) outer boundary, and (c) singular vertices.

I8. If a HDS supports facets, and satisfies invariants I1–I4, then facet(h)=facet(g)
for any halfedges h, g that belong to the same boundary cycle.

2.4 Vertex and Facet Links

Even though our HDS may support vertices or facets, we may or may not want to
allocate storage from each vertex of facet to remember one (perhaps all) the incidents
halfedges. We say that a vertex-supporting HDS is source-linked if it provides a pointer
source_cycle(v) to a halfedge whose source is the vertex v, and that it is target-linked
if it provides a pointer target_cycle(v) to a halfedge whose source is the vertex v. A
facet-supporting HDS is facet-linked if it provides a pointer boundary_cycle(f) to a
halfedge on the boundary of any facet (in which case it must also provide the reverse
access facet(h) to the facet which is incident to a given halfedge h). It is possible to
envision use of both vertex- and facet-linked HDS, and non-linked HDS. The following
invariants guarantee the validity of the HDS.
I9. If a HDS supports vertices, is source-linked, and satisfies Invariants I1–I7, then

source(source_cycle(v))=v for every vertex v.
I10. If a HDS supports vertices, is target-linked, and satisfies Invariants I1–I7, then

target(target_cycle(v))=v for every vertex v.
I11. If a HDS supports facets, is facet-linked, and satisfies Invariants I1–I6 and I8,

then facet(boundary_cycle(f))=f for every facet f.

2.5 HDS with Holes in Facets and Singular Vertices

An HDS may or may not allow facets to have holes. Not having holes means that
each facet boundary consists of a single cycle; it also means that there is a one-to-
one correspondence between facets and abstract facets. In a HDS supporting holes in
facets, each facet is required to give access to a hole container.2 This container may be
global to the HDS, or contained in the facet itself. Each element of that container need
only point to a single halfedge.

In a facet with holes, one of the cycles may be distinguished and called the outer
boundary; the other holes are the inner holes. This is only meaningful for plane struc-
ture (see Figure 2(b)), where the outer boundary is distinguished by its orientation
2 The container concept is defined in the C++ STL.
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A DCEL Data Structure for Non-2-Manifolds 

§  Directed Edge DS: extension of half-edge DS for meshes that are 
not 2-manifold at just a few extraordinary places 
 
 
 

§  Idea:  

§  Store pointers to other edges (e.next, e.prev, v.edge, f.edge) as integer 
indices into the edge array 

§  Use the sign of the index as a flag for additonal information 

§  Interpret negative indices as pointers into additonal arrays, e.g., 

-  a list of all edges eminating from a vertex; or 

-  the connected component accessible from a vertex / edge 
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§  Why does the conventional DCEL fail for the following example? 

v
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Combinatorial Maps 

§  Remark: winged-edge and DCEL data structures are (simple) 
examples of so-called combinatorial maps 

§  Other combinatorial maps are: 

§ Quad-edge data structure (and augmented quad-edge) 

§ Many extensions of DCEL 

§  Cell-chains, n-Gmaps  
(like DCELs that can be extended to n-dimensional space) 

§ Many more … 
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The Euler Equation 

§  Theorem (Euler's Equation): 
Let V, E, F  = number of vertices, edges, faces 
in a polyhedron that is homeomorph to a sphere.  

   Then,  

§  Examples: 

V = 8 
E = 12 
F = 6 

V = 8 
E = 12+1 
F = 6 +1 

V = 8+1 
E = 12+1+1 
F = 6 +1 

V � E + F = 2
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Proof (given by Cauchy) 

§  Given: a closed mesh (Polyhedron) 

§  First Idea: 

§  Remove one facet (yields an open mesh; the border is exactly the edge 
cycle of the removed facet) 

§  Stretch the mesh by pulling its border apart until it becomes a planar 
graph (works only if the polyhedron is homeomorph to a sphere) 

§  It remains to show: 

§  Second Idea: triangulate the graph (i.e., the mesh) 

§  Draw diagonals in all facets with more than 3 vertices 

§  For the new feature count we have 

V � E + F = 1

V � � E � + F � = V � (E + 1) + (F + 1) = V � E + F
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§  The graph has a border; triangles have 0, 1, or 2 "border edges" 

§  Repeat one of the following two transformations: 

§  If there is a triangle with exactly one border edge, 
remove this triangle ; it follows that 

§  If there is a triangle with exactly two border edges, 
remove the triangle ; it follows that 

§  Repeat, until only one triangle remains 

§  For that triangle, the Euler equation is obviously correct 

§  Because each of the above transformations did not change the value of 
V-E+F, the equation is also true for the original graph, hence for the 
original mesh 

    

V � � E � + F � = V � (E � 1) + (F � 1) = V � E + F

V � � E � + F � = (V � 1)� (E � 2) + (F � 1) = V � E + F
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Application of Euler's Equation to Meshes 

§  Euler's Equation → relationship between #triangles and  
#vertices in a closed triangle mesh 

§  In a closed triangle mesh, 
each edge is incident to exactly 2 triangles , so 

§  Plug this into Euler's equation: 

§  Therefore, for large triangle meshes 

3F = 2E

2 = V � 3

2
F + F ⇥ 1

2
F = V –2

F � 2V
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Application of Euler's Equation to the Platonic Solids 

§  Definition Platonic Solid:  
 a convex polyhedron, consisting of a number of   
 congruent regular polyhedra 

§  Theorem (Euklid): 
 There are exactly five platonic solids. 
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Proof 

§  All facets have the same number of edges = n;  therefore: 

§  All vertices have the same number of incident edges = m; 
therefore 

§  Plugging this into Euler's equation: 

§  Yields the following condition on m and n: 

2E = nF � F =
2

n
E

2E = mV � V =
2

m
E

2 = V � E + F =
2

m
E � E +

2

n
E ⇥ 2

E
=

2

m
� 1 +

2

n

1

m
+

1

n
=

1

2
+

1

E
>

1

2
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§  Additional condition: m and n both must be ≥ 3 

§  Which {m,n} fulfill these conditions: 

 {3,3}       {3,4}      {4,3}      {5,3}      {3,5} 
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Digression: Platonic Solids in the Arts 

§  The platonic solids have been known at least 1000 years before 
Plato in Scotland 
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Portrait of Johannes Neudörfer and his Son 
Nicolas Neufchatel, 1527—1590 

Dürer: Melencolia I 
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The Euler Characteristic 

§  Caution: the Euler equation holds only for polyhedra, that are 
topologically equivalent to a sphere! 

§  Examples: 

§  But: the quantity V-E+F stays the same no matter how the 
polyhedron is deformed (homeomorph)  
→ so the quantity V-E+F is a topologic invariant 

Tetrahemihexahedron Octahemioctahedron Cubohemioctahedron 

V-E+F 6 - 12 + 7 = 1 12 - 24 + 12 = 0 12 - 24 + 10 = -2 
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§  Definition Euler characteristic: 

§  Examples: 

2 0 -2 

0 0 -4 

� = V � E + F
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§  The Euler characteristic is even independent of the tessellation! 

Euler Poincaré Characteristic: 2/5Euler-Poincaré Characteristic: 2/5

�Euler-Poincaré characteristic Ȥ(M) = V-E+F is 
independent of tessellation.

V=24, E=48, F=22
Ȥ(M) =V-E+F=-2

V=16, E=32, F=16 V=28, E=56, F=26V=16 E=36 F=20

11

V 16, E 32, F 16
Ȥ(M) =V-E+F=0

V 28, E 56, F 26
Ȥ(M) =V-E+F=-2

V 16, E 36, F 20
Ȥ(M) =V-E+F=0

V = 16 
E = 32 
F = 16 
𝝌 = 0  = 0 

V = 16 
E = 36 
F = 20 
𝝌 = 0  = 0 

V = 28 
E = 56 
F = 26 
𝝌 = -2  = -2 

V = 24 
E = 48 
F = 22 
𝝌 = -2  = -2 
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§  Beware: sometimes it is not easy  
to determine the genus! 

§  Example: genus = 2 

§  "Proof": deform topologically equivalently, until the genus is obvious 

1. 2. 3. 
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§  What is the genus of this object? 

Global Topology: GenusGlobal�Topology:�Genus

GenusGenus:�:�
Half�the�maximal�number�of�closed�paths�that�do�not�disconnect�

the�mesh�(=�the�number�of�holes)

Genus 1 Genus 2Genus 0 Genus ?
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Homeomorphisms: 3/3Homeomorphisms: 3/3

�Hence, any orientable 2-manifold mesh without 
boundary is homeomorphic to a sphere with m
handles (i.e., genus m), where m t 0.

17

The Euler-Poincaré Equation 

§  Generalization of the Euler equation for 2-manifold closed 
surfaces (possibly with several components): 

§  G = # handles,  S = # shells (Schalen / Komponenten) 

§  G is called "Genus" 

§  Handle (hole, Loch): a piece of string inside a 
handle cannot be shrunk towards a single point 

§  Shell (Schale): by walking on the surface of a shell, each point can be 
reached  

§ We can even cut out so-called "voids" (Aushöhlungen) by "inner" 
shells 

§  There are many more generalizations! 

V � E + F = 2(S � G )
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§  Examples: 

§  V = 16,  E = 28,  F = 14,  S = 1,  G = 0: 
 V - E + F = 2 = 2(S - G) 

§  V = 16,  E = 32,  F = 16,  S = 1,  G = 1: 
 V - E + F = 0 = 2(S - G) 

§  V = 16+8,  E = 32+12,  F = 16+6, G = 1,  S = 2: 
 V - E + F = 2 = 2(S - G) 
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§  Theorem: 
Assume we are given a closed and orientable mesh consisting of 
just one shell. Then the following holds: 
The Euler characteristic 𝝌 = 2, 0, -2, …   ⇔  = 2, 0, -2, …   ⇔ 
the mesh is topologically equivalent to a sphere, a torus, a 
double torus, etc. … 
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§  Definition "regular quad mesh": 
Each face of the mesh is a quadrangle  
(a.k.a. quad, quadrilateral),  
and each vertex has degree 4. 

§  Application 1: 
Each closed, orientable, regular  
quad mesh must be topologically  
equivalent to a torus 

§  Proof: 

§  In such a mesh we have:  4V = 2E  ⟶  V = ½ E 

§  By counting the edges via the faces:  4F = 2E  ⟶  F = ½ E 

§  Therefore 𝝌 (M) = V - E + F = 0   ⟶  M = torus (by previous theorem) 

Applications: 2/3Applications: 2/3

�Only a torus can be a regular quad mesh!
�Since each vertex has 4 edges and each edge is g g

counted twice, we have 4V = 2E (i.e., V=E/2).
�Since each face has 4 edges and each edge is�Since each face has 4 edges and each edge is 

counted twice, we have 4F = 2E (i.e., F = E/2).
�Thus F(M) = V-E+F = 0 means a torus!�Thus, F(M) = V-E+F = 0 means a torus!

19

(3,3,0) (3,4,0) (3,5,0) (4,3,0)
Tetrahedron Octahedron Icosahedron Cube

Figure 4: Regular genus-0 meshes with both n and m larger than
2(See Figure 1 for (5,3,0), dodecahedron).

This equation has only three integer solutions: (4,4,1), (3,6,1)
and (6,3,1). These solutions correspond classical regular tessella-
tions of an infinite plane [Grunbaum and Shephard 1987; Williams
1972].

For (4,4,1) case, value of e should be an even number since
e = 2v = 2 f . Therefore, vertices, faces and edges of any regu-
lar mesh (4,4,1) can be given as f = k, v = k and e = 2k where
k = 1,2, .... For v = f = 1 and e = 2, we get the simplest genus-1
mesh shown in Figure 5(A). If we apply a 4-conversion subdivi-
sion scheme such as Doo-Sabin [Doo and Sabin 1978; Sabin 2000],
Catmull-Clark [Catmull and Clark 1978], Simplest [Peters and Reif
1997] or dual of Simplest [Zorin and Schröder 2002] to an (4,4,1)
mesh, we obtain another (denser) (4,4,1) mesh.

For (3,6,1) case, 2e = 6v = 3 f , so f should be an even number,
v should be twice of f and e = 3v. Therefore, vertices, faces and
edges of any regular mesh (3,6,1) can be given as v = k, f = 2k
and e = 3k where k = 1,2, .... For v = 1, f = 2 and e = 3, we get
the simplest (3,6,1) genus-1 mesh. An example of regular mesh
(3,6,1) is shown in Figure 6(A). If we apply a triangle based sub-
division scheme such as Loop [Loop 1987] or

p
3 [Kobbelt 2000]

to an (3,6,1) mesh, we obtain other (denser) (3,6,1) meshes.

For (6,3,1) case, 2e = 6 f = 3v, so v should be an even number,
f should be twice of v and e = 3 f . Therefore, vertices, faces and
edges of any regular mesh (6,3,1) can be given as f = k, v = 2k
and e = 3k where k = 1,2, .... For f = 1, v = 2 and e = 3, we get
the simplest (6,3,1) genus-1 mesh. An example of regular mesh
(6,3,1) is shown in Figure 7(A). If we apply a hexagonal based
subdivision scheme such as dual of Loop [Prautzsch and Boehm
2000] or dual of

p
3 [Claes et al. 2002; Akleman and Srinivasan

November 2002; Oswald and Schröder 2003] to an (6,3,1) mesh,
we obtain other (denser) (6,3,1) meshes.

(A) (B) (C)

Figure 5: Regular (4,4,1).

4 Regular Genus¿1 Meshes

For g > 1 if we rearrange the Euler-Poincare equation, we find the
following equations for e,v, and f .

Figure 6: Examples of regular (3,6,1)meshes.

Figure 7: Examples of regular (6,3,1) meshes.

e=
2nm

nm�2n�2m (g�1) (9)

f =
4m

nm�2n�2m (g�1) (10)

v=
4n

nm�2n�2m (g�1) (11)

Integral solutions to these equations makes necessary conditions for
regular meshes.

Theorem 4.1 There exist infinitely many integer solutions to equa-
tions (9), (10) and (11).

PROOF.

• Let there exist a value of g = g1 such that equations (9), (10)
and (11) give integer solution with e= e1, v= v1 and f = f1.
Then for any gk = k(g1�1)+1 where k = 1,2, ... there exist
integer solutions e= ke1, v= kv1 and f = k f1.

• Let g1 = nm�2n�2m+1, then the integer solutions to equa-
tions (9), (10) and (11) are e= 2nm, v= 4n and f = 4m.

Theorem 4.2 If for given n, m, and g> 1, a regular mesh exists for
(n,m,g), then we can construct regular meshes (n,m,k(g�1)+1)
for any k � 1 from (n,m,g).

PROOF. Suppose that M is an (n,m,g) regular mesh, where g >
1, and that SM is the corresponding 2-manifold. We perform the
following topological operations on SM :

• Cut a handle along a circle C that does not pass through any
vertex ofM (note that this is always possible since the meshM
has only finitely many vertices on the surface SM). This leaves
a 2-manifold S0 with two “holes” H1 and H2 (see Figure 8);

• make k copies of the above structure S0: S01, . . ., S
0
k;

• arrange the k copies of the structure S01, . . ., S
0
k as a ring, and

paste the hole H1 in S0i with the hole H2 in S0i+1 for all i, 1 
i  k (here we have let S0k+1 = S01) and let the related edges
in M crossing the boundaries of the holes H1 and H2 aligned
properly (see Figure 9).
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Regular Meshes 

§  Definition: 
A regular (n,m,g)-mesh is a closed, orientable mesh, with genus g, 
where each facet has exactly n edges, and each vertex has exactly 
degree m. 

§  Examples: 

§  The (n,m,0)-meshes are exactly the Platonic solids. 

§  The regular quad mesh is a regular (4,4,1)-mesh 
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§  In a regular mesh we have 

§  Plugging that into the Euler equation, we obtain 

§  For regular genus-1 meshes we have: 

§  The only possible integer  
solutions are:   (4, 4, 1)    (3, 6, 1)    (6, 3, 1) 

nf = 2e = mv

1.2 Motivation for Studying Regular Meshes

Our motivation to study regular meshes comes from understand-
ing the power of various mesh modeling approaches. One of our
recent work [Srinivasan and Akleman 2004] suggested that sub-
division schemes [Zorin and P. Schröder 2000] are more power-
ful than various fractal schemes such as Iterated Function Systems
(IFS) [Barnsley 1988; Mandelbrot 1980]. Another one of our re-
cent results [Akleman et al. 2004] further showed the limitations
of subdivision schemes. This paper implicitly shows that vast ma-
jority of regular meshes cannot be created by subdivision schemes
(There are, of course, some exceptions such as (4,4,1), (6,3,1) and
(3,6,1)). Moreover, it is possible to create dodecahedron (3,5,0)
from tetrahedron (3,3,0) by using pentagonal conversion algorithm
[Akleman et al. 2004]. Simplest subdivision [Peters and Reif 1997]
can create octahedron (3,5,0) from tetrahedron (3,3,0).

Another motivation for studying regular meshes is texture mapping.
The regular meshes in the form of (3,m,g) and (4,m,g) provide
nice triangular and quadrilateral subdivisions of high genus sur-
faces. These quadrilateral or triangular patches can seamlessly be
covered by aperiodic tiles [Stam 1997; Neyret and Cani 1999; Co-
hen et al. 2003]. (3,m,g) and (4,m,g) can also provide a frame-
work to describe control meshes for patch modeling [Takahashi
et al. 1997].We also think that regular meshes will eventually be
useable for topological simplification of meshes. Regular meshes
can also be useful for morphing high genus surfaces from one to an-
other. We note that there has been extensive literature in mathemat-
ical research on the related topics [?; Cromwell 1997; Grunbaum
and Shephard 1987]. For example, regular meshes on surfaces of
genus 1 and 2 has been investigated by Brahana [Brahana 1926]
and regular polyhedra for infinite genus is discovered by Coxeter
(6,6,∞) (6,4,∞) and (4,6,∞) [Coxeter 1937; Gott 1967; Bulatov
2005; Green 2005]

2 Euler Equation

In topological mesh modeling, our only concern is mesh structure;
how faces, edges and vertices are related with each other. Euler
equation is the fundamental equation that gives the relationship be-
tween the number of faces, f , the number of edges, e, and the num-
ber of vertices v. Using Euler-Poincare equation, without using
geometric properties, we can identify some essential properties of
manifold meshes. Euler-Poincare equation is given as follows:

f � e+ v= 2�2g (1)

where g is the total number of handles in the surface, called genus.

Using Euler-Poincare equation, it is possible to systematically
search for regular meshes. First note that if all faces have the same
number of sides n and all vertices has the same valence m, we can
obtain the following relationships:

n f = 2e (2)

mv= 2e (3)

If we plug in these relationships in Euler-Poincare equation, we
obtain a simplified equation

✓
1
n

+
1
m
� 1
2

◆
e= 1�g. (4)

The integer solutions of these equations for any given n,m,g give
us an idea about regular manifold meshes for that triplet. But, note
that having integer solutions to equation (4) alone does not prove
existence of the regular mesh.

3 Regular Genus-0 Meshes

For genus-0 surfaces, the equations (2), (3) and (4) can be further
simplified to the followings.

e=
2nm

2n�2m+nm
(5)

v=
4m

2n�2m+nm
(6)

f =
4n

2n�2m+nm
(7)

3.1 Manifold Polygons and Their Duals

The polygons can be defined as meshes in which all vertices are
valence-2. If we plug in m = 2 to Equations (5), (2( and (3), we
simply get e = n, f = 2 and v = n. In other words, in this case,
there are exactly n edges and vertices, which is also the number
of the sides of the faces; and there are only two faces; i.e. these
are two-sided (manifold) polygons. Some examples of manifold
polygons are shown in Figure 3

A B C D

Figure 3: Polygon-manifolds: A. (2,2,0), Two-gon; B. (3,2,0),
Triangle; C. (4,2,0), Quadrilateral; D. (5,2,0), Pentagon.

If we choose polygons as two-gons, i.e. n = 2, we simply get the
dual of the manifold-polygons. In this case, there will be only two
vertices, the number of edges and faces will be e= f = m.

3.2 Regular Platonic Meshes

Regular genus-0 meshes also include platonic meshes, which are
generalized version of platonic polyhedra [Stewart 1991; Williams
1972; Wells 1991], and regular polygons. Regular or Platonic poly-
hedra are defined by a set of geometric conditions. However, we do
not need any geometric condition to find mesh structures of regular
polyhedra. For both n and m larger than 2, we obtain those mesh
structures as (3,3,0), (3,4,0), (3,5,0), (4,3,0) and (5,3,0) (See
Figures 4 and 1).

3.3 Regular Genus-1 Meshes

For g= 1 the Euler-Poincare equation greatly simplifies

nm�2n�2m= 0 (8)

1.2 Motivation for Studying Regular Meshes

Our motivation to study regular meshes comes from understand-
ing the power of various mesh modeling approaches. One of our
recent work [Srinivasan and Akleman 2004] suggested that sub-
division schemes [Zorin and P. Schröder 2000] are more power-
ful than various fractal schemes such as Iterated Function Systems
(IFS) [Barnsley 1988; Mandelbrot 1980]. Another one of our re-
cent results [Akleman et al. 2004] further showed the limitations
of subdivision schemes. This paper implicitly shows that vast ma-
jority of regular meshes cannot be created by subdivision schemes
(There are, of course, some exceptions such as (4,4,1), (6,3,1) and
(3,6,1)). Moreover, it is possible to create dodecahedron (3,5,0)
from tetrahedron (3,3,0) by using pentagonal conversion algorithm
[Akleman et al. 2004]. Simplest subdivision [Peters and Reif 1997]
can create octahedron (3,5,0) from tetrahedron (3,3,0).

Another motivation for studying regular meshes is texture mapping.
The regular meshes in the form of (3,m,g) and (4,m,g) provide
nice triangular and quadrilateral subdivisions of high genus sur-
faces. These quadrilateral or triangular patches can seamlessly be
covered by aperiodic tiles [Stam 1997; Neyret and Cani 1999; Co-
hen et al. 2003]. (3,m,g) and (4,m,g) can also provide a frame-
work to describe control meshes for patch modeling [Takahashi
et al. 1997].We also think that regular meshes will eventually be
useable for topological simplification of meshes. Regular meshes
can also be useful for morphing high genus surfaces from one to an-
other. We note that there has been extensive literature in mathemat-
ical research on the related topics [?; Cromwell 1997; Grunbaum
and Shephard 1987]. For example, regular meshes on surfaces of
genus 1 and 2 has been investigated by Brahana [Brahana 1926]
and regular polyhedra for infinite genus is discovered by Coxeter
(6,6,∞) (6,4,∞) and (4,6,∞) [Coxeter 1937; Gott 1967; Bulatov
2005; Green 2005]

2 Euler Equation

In topological mesh modeling, our only concern is mesh structure;
how faces, edges and vertices are related with each other. Euler
equation is the fundamental equation that gives the relationship be-
tween the number of faces, f , the number of edges, e, and the num-
ber of vertices v. Using Euler-Poincare equation, without using
geometric properties, we can identify some essential properties of
manifold meshes. Euler-Poincare equation is given as follows:

f � e+ v= 2�2g (1)

where g is the total number of handles in the surface, called genus.

Using Euler-Poincare equation, it is possible to systematically
search for regular meshes. First note that if all faces have the same
number of sides n and all vertices has the same valence m, we can
obtain the following relationships:

n f = 2e (2)

mv= 2e (3)

If we plug in these relationships in Euler-Poincare equation, we
obtain a simplified equation
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n

+
1
m
� 1
2

◆
e= 1�g. (4)

The integer solutions of these equations for any given n,m,g give
us an idea about regular manifold meshes for that triplet. But, note
that having integer solutions to equation (4) alone does not prove
existence of the regular mesh.

3 Regular Genus-0 Meshes

For genus-0 surfaces, the equations (2), (3) and (4) can be further
simplified to the followings.

e=
2nm

2n�2m+nm
(5)

v=
4m

2n�2m+nm
(6)

f =
4n

2n�2m+nm
(7)

3.1 Manifold Polygons and Their Duals

The polygons can be defined as meshes in which all vertices are
valence-2. If we plug in m = 2 to Equations (5), (2( and (3), we
simply get e = n, f = 2 and v = n. In other words, in this case,
there are exactly n edges and vertices, which is also the number
of the sides of the faces; and there are only two faces; i.e. these
are two-sided (manifold) polygons. Some examples of manifold
polygons are shown in Figure 3

A B C D

Figure 3: Polygon-manifolds: A. (2,2,0), Two-gon; B. (3,2,0),
Triangle; C. (4,2,0), Quadrilateral; D. (5,2,0), Pentagon.

If we choose polygons as two-gons, i.e. n = 2, we simply get the
dual of the manifold-polygons. In this case, there will be only two
vertices, the number of edges and faces will be e= f = m.

3.2 Regular Platonic Meshes

Regular genus-0 meshes also include platonic meshes, which are
generalized version of platonic polyhedra [Stewart 1991; Williams
1972; Wells 1991], and regular polygons. Regular or Platonic poly-
hedra are defined by a set of geometric conditions. However, we do
not need any geometric condition to find mesh structures of regular
polyhedra. For both n and m larger than 2, we obtain those mesh
structures as (3,3,0), (3,4,0), (3,5,0), (4,3,0) and (5,3,0) (See
Figures 4 and 1).

3.3 Regular Genus-1 Meshes

For g= 1 the Euler-Poincare equation greatly simplifies

nm�2n�2m= 0 (8)
(3,3,0) (3,4,0) (3,5,0) (4,3,0)

Tetrahedron Octahedron Icosahedron Cube

Figure 4: Regular genus-0 meshes with both n and m larger than
2(See Figure 1 for (5,3,0), dodecahedron).

This equation has only three integer solutions: (4,4,1), (3,6,1)
and (6,3,1). These solutions correspond classical regular tessella-
tions of an infinite plane [Grunbaum and Shephard 1987; Williams
1972].

For (4,4,1) case, value of e should be an even number since
e = 2v = 2 f . Therefore, vertices, faces and edges of any regu-
lar mesh (4,4,1) can be given as f = k, v = k and e = 2k where
k = 1,2, .... For v = f = 1 and e = 2, we get the simplest genus-1
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e=
2nm

nm�2n�2m (g�1) (9)

f =
4m

nm�2n�2m (g�1) (10)

v=
4n

nm�2n�2m (g�1) (11)

Integral solutions to these equations makes necessary conditions for
regular meshes.

Theorem 4.1 There exist infinitely many integer solutions to equa-
tions (9), (10) and (11).

PROOF.

• Let there exist a value of g = g1 such that equations (9), (10)
and (11) give integer solution with e= e1, v= v1 and f = f1.
Then for any gk = k(g1�1)+1 where k = 1,2, ... there exist
integer solutions e= ke1, v= kv1 and f = k f1.

• Let g1 = nm�2n�2m+1, then the integer solutions to equa-
tions (9), (10) and (11) are e= 2nm, v= 4n and f = 4m.

Theorem 4.2 If for given n, m, and g> 1, a regular mesh exists for
(n,m,g), then we can construct regular meshes (n,m,k(g�1)+1)
for any k � 1 from (n,m,g).

PROOF. Suppose that M is an (n,m,g) regular mesh, where g >
1, and that SM is the corresponding 2-manifold. We perform the
following topological operations on SM :

• Cut a handle along a circle C that does not pass through any
vertex ofM (note that this is always possible since the meshM
has only finitely many vertices on the surface SM). This leaves
a 2-manifold S0 with two “holes” H1 and H2 (see Figure 8);

• make k copies of the above structure S0: S01, . . ., S
0
k;

• arrange the k copies of the structure S01, . . ., S
0
k as a ring, and

paste the hole H1 in S0i with the hole H2 in S0i+1 for all i, 1 
i  k (here we have let S0k+1 = S01) and let the related edges
in M crossing the boundaries of the holes H1 and H2 aligned
properly (see Figure 9).

(3,3,0) (3,4,0) (3,5,0) (4,3,0)
Tetrahedron Octahedron Icosahedron Cube

Figure 4: Regular genus-0 meshes with both n and m larger than
2(See Figure 1 for (5,3,0), dodecahedron).
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§  Theorem: 
There are infinitely many regular (n,m,g)-meshes for all pairs 
(n,m) with nm – 2n – 2m > 0. 

§  Proof: 

§  Rewrite equations (1) and (2) 
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2(See Figure 1 for (5,3,0), dodecahedron).
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§  Let g1 = nm – 2n – 2m ; 
then e1 = 2nm, v1 = 4n, f1 = 4m are solutions of the 3 equations. 

§  Let gk = k(g1 – 1) + 1  , k = 1, 2, … ; 
then ek = ke1 , vk = kv1 , fk = kf1 are solutions, too 

§  Remark: the proof does not tell us how to construct such meshes. 

§  Example: a (4,5,2)-mesh 

Figure 11: A view of (4,5,2) that is obtained by applying the oper-
ation given in Figure 10 twice to a cube.

However, the theorem does not guarantee to get the regular mesh
with smallest g. For instance, for n = 4 and m = 6, using the the-
orem we obtain (4,6,3), however, the simplest regular mesh with
n = 4 and m = 6 is (4,6,2) as shown in Figure 12 (Also see [Cox-
eter 1965]). Note that the duals of these regular meshes, (5,4,2)
and (6,4,2), also exist and constructible.

Figure 12: Two views of (4,6,2) that cannot be obtained by using
the operation presented in Theorem 4.5.

The concept behind to create a lower bound for triangular regular
meshes is similar but it requires to solve a slightly more compli-
cated problem.

Theorem 4.6 For any given m > 6, there exists an efficiently con-
structible regular mesh (3,m,m�5).

PROOF.

For n = 3, if we choose g = m� 5, then the integer solutions to
equations (9), (10) and (11) becomes e= 6m, v= 12 and f = 4m.

Now, let f0 and f1 be two triangles that do not share any vertex. We
will call these two f0 and f1 again a distinct-pair. The operation
simply connects these two faces with a handle by inserting 6 edges
as shown in Figure 13. After the operation, the initial two faces f0
and f1 cease to exist and 6 new triangles are created; i.e. the number
of triangles increases by 4. The newly created triangles consist of
more distinct-pairs, i.e. the number of distinct-pairs increases by
each application of the operations.

Figure 13: The procedure to create (3,m,m� 5). Initial two trian-
gles are f0 = (a,b,c) and f1 = (d,e, f ). After 6 edge insertions, f0
and f1 disappear and 6 new triangles are created.

Let us now apply this operation to an icosahedron (3,5,0). An
icosahedron has two distinct-pairs, and therefore, the operation
must be applied twice to cover all vertices. Then, the genus in-
creases by 2 and vertex valence also increases by 2. The number
of vertices stays the same. The number of faces increases by 4. As
a result, after k iterations the regular mesh will be (3,5+ 2k,2k).
Note that here genus has always to be an even number. In other
words, we get (3,m,m�5) where m is an odd number.

It is also possible to get regular meshes with even vertex valences
and odd genera by starting from a regular mesh (3,6,1) with 12
vertices. This toroidal mesh also has two distinct-pairs, and there-
fore, the operation must again be applied twice to cover all vertices.
Similarly, the genus and vertex valence increases by 2. The number
of vertices stays the same. The number of faces increases by 4. As a
result, after k iterations the regular mesh will be (3,6+2k,2k+1).
Note that in this case genus is always an odd number. In other
words, we get (3,m,m�5) where m is an even number. This con-
cludes that we can get (3,m,m�5)for both even and odd m values.

Again, above theorem can identify (3,7,2) and its dual (7,3,2), for
g= 2. However, 3 more triangulated regular meshes exist for g= 2.
which are (3,8,2); (3,9,2); (3,12,2) [Brahana 1926]. Note that the
duals of these regular meshes, (8,3,2), (9,3,2) and (12,3,2), also
exist and constructible.

Conjecture 4.1 For any given m > 3, there exists an efficiently
constructible regular mesh (5,m,3m�9).

Conjecture 4.2 For any given m > 3, there exists an efficiently
constructible regular mesh (6,m,m�2).

Note that these conjectures also do not provide tight lower bounds.
We have already known that the regular meshes (5,5,2) and (6,6,2)
exist and constructible [Brahana 1926]. For (5,5,2) see Figure 14.
(6,6,2) can be obtained from a truncated tetrahedron. A truncated
tetrahedron consists of 4 hexagons and 4 triangles. All vertices are
valence-3. By simply pasting triangular faces, we create a genus-2
object with hexagonal faces and each vertex becomes valence-6.

Figure 14: Three views of (5,5,2).

5 Conclusion

This paper presents our preliminary results on regular meshes. Our
work shows that there exist infinitely many regular meshes for
g > 1. Moreover, we have constructive proofs that describe how
to create high genus regular meshes that consist of triangles and
quadrilaterals (3,m,g) and (4,m,g).

Regular meshes seem to be an extremely fertile area. For instance,
there are many interesting regular meshes such as (4g,4g,g), which
we did not discuss in this paper. In fact, (4g,4g,g) is widely used in
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